EXISTENCE AND REGULARITY FOR THE EVOLUTION OF HIGHER-DIMENSIONAL *H*-SYSTEMS

Masashi Misawa, Department of Mathematics, Faculty of Science, Kumamoto University,

Abstract Let $m \ge 2$ be a positive integer and Ω be a bounded domain in m-dimensional Euclidean space \mathbb{R}^m with smooth boundary $\partial\Omega$. For a real number H, the surface of constant mean curvature H in \mathbb{R}^{m+1} is prescribed by the nonlinear degenerate elliptic systems of second order partial differential equations, called "H-system",

$$-\operatorname{div}\left(|\nabla u|^{m-2}\nabla u\right) = m^{\frac{m}{2}}H\,\nabla_1 u\wedge\cdots\wedge\nabla_m u \tag{1.1}$$

for a map $u(x) = (u^1(x), \ldots, u^{m+1}(x))$ defined for $x = (x_1, \ldots, x_m) \in \Omega$ with values into R^{m+1} , where $\nabla_{\alpha} = \frac{\partial}{\partial x^{\alpha}}$, $\alpha = 1, \cdots, m$, ∇u is the spatial gradient of a map u, $\nabla u = (\nabla_{\alpha} u^i)$, and the cross product $w_1 \wedge \cdots \wedge w_m : R^{m+1} \oplus \cdots \oplus R^{m+1} \to R^{m+1}$ is defined by the property that $w \cdot w_1 \wedge \cdots \wedge w_m$ = det W for all vectors $w, w_i \in R^{m+1}$, $i = 1, \ldots, m$, and for the $(m + 1) \times (m+1)$ -matrix W having the first row (w^1, \ldots, w^{m+1}) and the *i*-th row $(w^{1}_{i-1}, \ldots, w^{m+1}_{i-1})$, $i = 2, \ldots, m + 1$. Here and in what follows, the notation and the summation notation over repeated indices is adopted.

We call a map $u: \Omega \to \mathbb{R}^{m+1}$ conformal if

$$\nabla_{\alpha} u \cdot \nabla_{\beta} u = \lambda^2 \delta_{\alpha\beta} \quad \alpha, \beta = 1, \dots, m, \tag{1.2}$$

hold in Ω for some real-valued function λ which does not vanish in \mathbb{R}^m . If a map u is of \mathbb{C}^2 -class and conformal, then it is seen that u actually defines a hypersurface $u(\Omega)$ in \mathbb{R}^{m+1} which has constant mean curvature H at every point $u(x) \in u(\Omega), x \in \Omega$. Now we consider the Dirichlet boundary value problem for (1.1) with boundary value u_0 which is a given smooth map defined on $\overline{\Omega}$ with values in \mathbb{R}^{m+1} .

Note that the equation (1.1) has a variational structure. In fact, a solution of (1.1) gives a surface of least area enclosing a given volume. We call such surfaces as above *soap-bubbles*. We can recognize a solution of the Dirichlet problem for (1.1) to be a critical point of the variational problem, which is to minimize the variational functional, called "*m*-energy",

$$I(u) = \int_{\Omega} \frac{1}{m} \left| \nabla u \right|^m dx, \tag{1.3}$$

under the constraint that the quantity, called "volume-functional",

$$V(u) = \frac{1}{m+1} \int_{\Omega} u \cdot \nabla_1 u \wedge \dots \wedge \nabla_m u \, dx \tag{1.4}$$

is prescribed by V(u) = a given constant, where V(u) is interpreted as the algebraic volume enclosed between the surface $u(\Omega)$ and a fixed surface $u_0(\Omega)$ spanning the curve $u_0(\partial\Omega)$ defined by the Dirichlet data u_0 . Observe that (1.1) is the Euler-Lagrange equation of the functional $E(u) = I(u) - m^{\frac{m}{2}} HV(u)$.

The one approach to look for a solution of the Dirichlet boundary value problem for (1.1) is to exploit the evolution for (1.1). Consider the Cauchy-Dirichlet problem: For a map $u: \Omega_{\infty} = (0, \infty) \times \Omega \longrightarrow \mathbb{R}^{m+1}$, $u(z) = (u^1(z), \cdots, u^n(z))$, $z = (t, x) \in \Omega_{\infty}$,

$$\partial_t u - \operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right) = m^{\frac{m}{2}} H \nabla_1 u \wedge \dots \wedge \nabla_m u \quad \text{in } \Omega_{\infty}, \tag{1.5}$$

$$u = u_0$$
 on $\{t = 0\} \times \Omega \cup (0, \infty) \times \partial \Omega.$ (1.6)

 $E(u) = I(u) - m^{\frac{m}{2}}HV(u)$. We report a global existence and a regularity of a weak solution of (1.5) and (1.6) for a smooth data having a "small" image. Our main result is the following.

Theorem 1 Suppose that u_0 be a $W^{1,m}$ -map defined on Ω with values in \mathbb{R}^{m+1} satisfying the "smallness" condition $|H| \sup_{\Omega} |u_0| < 1$. Then, there exists a weak solution $u \in L^{\infty}(0, \infty; W^{1,m}(\Omega, \mathbb{R}^{m+1})) \cap W^{1,2}(0, \infty; L^2(\Omega, \mathbb{R}^{m+1}))$ of (1.5) and (1.6) such that $\sup_{\Omega} |u(t)| \leq \sup_{\Omega} |u_0|$ holds for any $t \geq 0$ and

$$\int_{(0,T)\times\Omega} |\partial_t u|^2 dz + \sup_{0\le t\le T} E(u(t)) \le E(u_0)$$
(1.7)

holds for all T > 0. The solution u also satisfies the initial condition, $|u(t) - u_0|_{W^{1,m}(\Omega)} \longrightarrow 0$ as $t \to 0$, and boundary condition $u(t) = u_0$ on $\partial\Omega$ in the trace sense in $W^{1,m}(\Omega, R^{m+1})$ for almost every $t \in (0, \infty)$.

Theorem 2 Suppose that u_0 be a C^2 -map defined on $\overline{\Omega}$ with values in \mathbb{R}^{m+1} satisfying the "smallness" condition $|H| \sup_{\Omega} |u_0| < \frac{1}{2}$. There exist a positive constant $\alpha < 1$ such that the weak solution obtained is locally Hölder continuous in $(0, \infty) \times \overline{\Omega}$ with an exponent α on the parabolic metric $|t|^{\frac{1}{p}} + |x|$ and the Hölder constant is bounded by a positive constant depending only on $m, \alpha, \partial\Omega$, |H| and the C^2 -norm of the data u_0 . The gradient of the solution is also locally Hölder continuous in $(0, \infty) \times \Omega$ with an exponent α on the usual parabolic metric $|t|^{\frac{1}{2}} + |x|$ and the Hölder constant is bounded by a positive constant depending number of $|t|^{\frac{1}{2}} + |x|$ and the Hölder constant is bounded by a positive constant depending only on $m, \alpha, |H|$ and $I(u_0)$.

To prove the existence, we use a time-discrete approximation which consists of the minimization of a family of variational functionals, of which the Euler-Lagrange equations are the time-discrete elliptic partial differential equations of Rothe-type for (1.5). In the study of regularity of a weak solution obtained above, we apply the regularity theorem for the evolutional p-Laplacian systems with critical growth on the gradient.

References

- F. Duzaar, M. Fuchs, Einige Bemerkungen über die Regularität stationären Punkten gewisser geometrischer Variationsintegrale, Math. Nachr. 152, (1991) 39-47.
- [2] F. Duzaar, J. F. Grotowski Existence and regularity for higher-dimensional H-systems, Duke Math. J. 101, (2000) 459-485.
- [3] N. Kikuchi, A method of constructing Morse flows to variational functionals, Nonlin. World 1 (1994), 131-147.
- [4] N. Hungerbühler, Global weak solutions of the *p*-harmonic flow into homogeneous spaces, Indiana Univ. Math. J. 45/1 (1996), 275-288.
- [5] M. Misawa, Partial regularity results for evolutional p-Laplacian systems with natural growth, Manusc. Math. **109**, (2002) 419-454.