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This talk is based on my recent joint work with Y. Yamazaki [32]. We study the

Cauchy problem for the nonlinear Schrödinger equation with interaction described by the

integral with respect to one direction of the intensity in two space dimensions:

i∂tu +
1

2
∆u = f(u), (NLS)

where u : R× R2 3 (t, (x, y)) 7→ u(t, x, y) ∈ C, ∆ is the Laplacian in space R2, and f(u)

is the nonlinear interaction given by

(f(u))(t, x, y) = λu(t, x, y)

∫ x

−∞
|u(t, x′, y)|2dx′

with λ ∈ R. For α, β ≥ 0, we define Ḣα,β = L2
yḢ

α
x ∩ L2

xḢ
β
y with norm ||u; Ḣα,β|| =

Max(||u; L2
yḢ

α
x ||, ||u; L2

xḢ
β
y ||).

Theorem 1. Let α and β satisfy 0 ≤ α < 1/2 and β ≥ 0. Let φ ∈ F(Ḣα,β) where F is

the Fourier transform. The (NLS) has a unique solution

u ∈ Xloc ≡ C(R; L2) ∩
⋂

0≤2/q=1/2−1/r≤1/2

Lq
loc(R; L2

xL
r
y).

Moreover, |Jx|αu, |Jy|βu ∈ Xloc, where

|Jx|α = Ux(t)|x|αUx(−t) = Mx(t)(−t2∆x)
α/2Mx(−t),

|Jy|β = Uy(t)|y|βUy(−t) = My(t)(−t2∆y)
β/2My(−t),

Ux(t) = exp(
it

2
∆x), Uy(t) = exp(

it

2
∆y),

Mx(t) = exp(
ix2

2t
)·,My(t) = exp(

iy2

2t
) · .

Basic estimates for the proof of Theorem 1 are based on the fractional Leibniz rule [25],

the generalized Hölder inequality in the Lorentz spaces [29,30], and the boundedness of

the Hilbert transform and the Riesz potential in the Lorentz space [27,36].
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To describe the large time behavior of solutions of (NLS) with small Cauchy data, we

introduce modified free dynamics for φ± ∈ L2 ∩ F(L2
xL

∞
y ):

v±1 (t) = U(t) exp(−iS±(t,−i∇))φ±,
v±2 (t) = U(t)M(−t) exp(−iS±(t,−i∇))φ±

= M(t)D(t) exp(−iS±(t, ·))φ̂±,
v±3 (t) = exp(−iS±(t, t−1x, t−1y))U(t)φ±

= M(t)D(t) exp(−iS±(t, ·))FM(t)φ±,

where

U(t) = exp

(
it

2
∆

)
= M(t)D(t)FM(t),

M(t) = exp

(
i

2t
(x2 + y2)

)
·,

(D(t)ψ)(x, y) = (it)−1ψ(t−1x, t−1y),

S±(t, x, y) = ±λ

∫ x

−∞
|φ̂±(x′, y)|2dx′ log |t|.

For ρ, ρ0 > 0 we define

B(ρ, ρ0) = {φ ∈ L2 ∩ F(Ḣα,β); ||φ : L2|| ≤ ρ0, ||φ;F(Ḣα,β)|| ≤ ρ}.

Theorem 2. Let α and β satisfy 0 < α < 1/2 < β < 1. Then for any ρ0 > 0 there exists

ρ > 0 such that for any φ ∈ B(ρ, ρ0) the solution u given by Theorem 1 satisfies

u ∈ X ≡ C(R; L2) ∩
⋂

0≤2/q=1/2−1/r≤1/2

Lq(R; L2
xL

r
y),

|Jx|αu, |Jy|βu ∈ X,

||u(t); L2
xL

∞
y || = O(|t|−1/2) as t → ±∞.

Moreover, there exist unique φ± ∈ L2 ∩ F(L2
xL

∞
y ) such that for ε > 0 sufficiently small

||FU(−t)u(t)− exp(−iS±(t, ·))φ̂±; L2 ∩ L2
xL

∞
y || = O(|t|−ε)

as t → ±∞. Furthermore,

||u(t)− vj(t); L
2|| = O(|t|−ε)

as t → ±∞, for j = 1, 2, and

||u(t)− v3(t); L
2|| → 0

as t → ±∞.

We use the method of Hayashi and Naumkin [15,17]. The following ingredients are new

and necessary to provide improvements, however. First, our method depends exclusively
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on a contraction argument and is independent of a contradiction argument in [15,17,18].

Secondly, our method depends exclusively on the generators of Galilei transforms and

is independent of the usual regularity argument. This enables us not to impose any

regularity assumption on the Cauchy data. Thirdly, our argument treats the L2 norm and

homogeneously weighted norms separately for the Cauchy data as well as for solutions.

This enable us not to impose smallness of the L2 norm of the Cauchy data. For instance,

data of the form ε−1ψ(ε−1x, ε−1y) with ε > 0 sufficiently small and ψ ∈ L2 ∩F(Ḣα,β) fall

within the scope of Theorem 2.
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