Propagation of the Homogeneous Wave Front Sets for Schrödinger Equations

Shu Nakamura (University of Tokyo)

For $a(x,\xi) \in C^{\infty}(\mathbb{R}^{2d})$, we denote the Weyl quantization by:

$$a^{w}(x, D_{x})\varphi(x) = \frac{1}{(2\pi)^{d}} \iint e^{i(x-y)\xi} a\left(\frac{x+y}{2}, \xi\right)\varphi(y)dyd\xi$$

for $\varphi \in \mathcal{S}(\mathbb{R}^d)$.

Definition 1. Let $u \in S'(\mathbb{R}^d)$. (x_0, ξ_0) is not in the homogeneous wave front set (HWF set) of u if there exists $a(x,\xi) \in C_0^{\infty}(\mathbb{R}^{2d})$ such that $a(x_0,\xi_0) \neq 0$ and

$$||a^w(hx, hD_x)u|| \le C_N h^N \quad (h \to 0)$$

for any N, where $\|\cdot\|$ denotes the L^2 -norm. We denote $(x_0, \xi_0) \notin HWF(u)$. The homogeneous wave front set HWF(u) is defined as the complement in $\mathbb{R}^{2d} \setminus \{0\}$.

Remark. (1) HWF(u) is a conic set in \mathbb{R}^{2d} .

(2) The usual wave front set is defined as follows: $(x_0, \xi_0) \notin WF(u)$ if there exists $a(x,\xi) \in C_0^{\infty}(\mathbb{R}^{2d})$ such that $a(x_0,\xi_0) \neq 0$ and

$$\|a^w(x,hD_x)u\| \le C_N h^N \quad (h \to 0)$$

for any N. Thus HWF(u) is analogous to WF(u) but homogeneous in (x, ξ) . We consider Schrödinger equation:

$$\frac{\partial}{\partial t}u(t,x)=-iHu(t,x),\quad (t\in\mathbb{R})$$

for $u(t, \cdot) \in L^2(\mathbb{R}^d)$, where

$$H = H_0 + V(x), \quad H_0 = \sum_{j,k=1}^d D_j a_{jk}(x) D_k, \quad D_j = -i\partial/\partial x_j.$$

Assumption A. $a_{jk}(x)$ and V(x) are smooth, and $(a_{jk}(x))$ is positive definite for each x. Moreover, there exist $\mu > 0$ and $\nu < 2$ such that for any $\alpha \in \mathbb{Z}_+^d$,

$$\begin{aligned} |\partial_x^{\alpha}(a_{jk}(x) - \delta_{jk})| &\leq C_{\alpha} \langle x \rangle^{-\mu - |\alpha|}, \\ |\partial_x V(x)| &\leq C_{\alpha}' \langle x \rangle^{\nu - |\alpha|} \quad (x \in \mathbb{R}^d). \end{aligned}$$

We denote

$$h_0(x,\xi) = \sum_{j,k=1}^d a_{jk}(x)\xi_j\xi_k$$

be the symbol of H_0 . For $(x, \xi) \in \mathbb{R}^{2d}$, we write the solution to the Hamilton equation:

$$\frac{d}{dt}y(t) = \frac{\partial h_0}{\partial \xi}(y(t), \eta(t)), \qquad \frac{d}{dt}\eta(t) = -\frac{\partial h_0}{\partial x}(y(t), \eta(t))$$

with the initial condition $y(0) = x, \eta(0) = y$ by $y(t, x, \xi)$ and $\eta(t, x, \xi)$.

We say (x,ξ) is forward nontrapping with respect to the evolution if $|y(t, x, \xi)| \rightarrow \infty$ as $t \rightarrow +\infty$. Then it is well-known that there exists an asymptotic momentum:

$$\xi_{+} = \lim_{t \to \pm\infty} \eta(t, x, \xi).$$

Theorem 1. Suppose (x_0, ξ_0) is forward nontrapping, and let ξ_+ be the asymptotic momentum. Let $t_0 > 0$ and let $u(t) = e^{-itH}u(0)$. If $(t_0\xi_+, \xi_+) \notin HWF(u(t_0))$, then $(x_0, \xi_0) \notin WF(u(0))$. In other words, if $(x_0, \xi_0) \in WF(u(0))$, then $(t_0\xi_+, \xi_+) \in HWF(u(t_0))$.

Remark. This result is similar to results by Craig-Kappeler-Strauss [CKS]. Also, it is related to works by Doi [Doi], Wunsch, Robbiano-Zuilly (analytic singularity).

Corollary 2. Suppose (x_0, ξ_0) is forward nontrapping, and let ξ_+ be the asymptotic momentum. Let s > 0. If u(t) decays rapidly in a conic neighborhood of ξ_+ for some t > 0, then $(x_0, \xi_0) \notin WF(u(0))$.

Idea of Proof. We construct an operator F(t) with a symbol: $\varphi(h; t, x, \xi)$ so that

- (i) $\varphi(h; t, \cdot, \cdot) \in C_0^{\infty}(\mathbb{R}^{2d})$ for each $t \ge 0, h > 0$;
- (ii) $\varphi(h; 0, x, \xi) = f(x, h\xi)$ with some $f \in C_0^\infty$ such that $f(x_0, \xi_0) > 0$;
- (iii) $\varphi(h; t_0, \cdot, \cdot)$ is supported in a small conic neighborhood of $(t_0\xi_+, \xi_+)$;
- (iv) The Heisenberg derivative of F(t) satisfies:

$$\delta F(t) := \frac{\partial}{\partial t} F(t) + i[H, F(t)] \ge -C_N h^N$$

for any N in the operator sense.

If we can find such $F(t) = \varphi^w(h; t, x, D_x)$, then Theorem 8 is proved as follows: Suppose $(t_0\xi_+, \xi_+) \notin HWF(u(t_0))$. Then by (4), we have

$$||F(t_0)u(t_0)|| = O(h^N) \quad (\forall N).$$

(In fact, we construct F(t) so that this holds.) By (5), we learn

$$\frac{d}{dt}\langle u(t), F(t)u(t)\rangle = \langle u(t), \delta F(t)u(t)\rangle \ge -C_N h^N, \quad (0 \le t \le t_0)$$

with any N. Combining them, we obtain

$$\langle u(0), F(0)u(0) \rangle = \langle u(t_0), F(t_0)u(t_0) \rangle - \int_0^{t_0} \langle u(t), \delta F(t)u(t) \rangle dt$$

= $O(h^N) + C_N h^N t_0 = O(h^N) \quad (\forall N).$

By (ii), $F(0) = f^w(x, hD_x)$ with $f(x_0, \xi_0) \neq 0$, and this implies $(x_0, \xi_0) \notin WF(u(0))$.

Construction of the Symbol $\varphi(h; t, x, \xi)$:

We construct $\psi(t, x, \xi)$ so that the Lagrange derivative:

$$\frac{D}{Dt} \psi(t, x, \xi) := \frac{\partial \psi}{\partial t} + \frac{\partial h_0}{\partial \xi} \frac{\partial \psi}{\partial x} - \frac{\partial h_0}{\partial x} \frac{\partial \psi}{\partial \xi} \ge 0;$$

 $\psi(0, x_0, \xi_0) > 0$; and supported in a small neighborhood of $(y(t, x_0, \xi_0), \eta(t, x_0, \xi_0))$. Then we set

$$\varphi_0(h;t,x,\xi) = \psi(h^{-1}t,x,h\xi).$$

For $k \geq 1$, we set

$$\varphi_k(h;t,x,\xi) = h^{\varepsilon(k-1)}t C_k \psi(h^{-1}t,x/\lambda_k,h\xi/\lambda_k)$$

where $\varepsilon = 2 - \nu > 0$, $1 < \lambda_1 < \lambda_2 < \cdots < 2$, and C_k are suitable constants. We define

$$\varphi(h;t,x,\xi) \sim \sum_{j=0}^{\infty} \varphi_j(h;t,x,\xi)$$

in the sense of an asymptotic sum with respect to h, and set

$$F(t) = \varphi^w(h; t, x, D_x).$$

Then we can show F(t) satisfies the required properties (i)-(iv).

References: [CKS] Craig, W., Kappeler, T., Strauss, W.: Microlocal disipertive smoothing for the Schrödinger equation. Comm. Pure Appl. Math. **48**, 769–860 (1996).

[Doi] Doi, S: Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow. Math. Ann. **318**, 355–389 (2000).