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with large initial data
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This is the joint work with Professor Naoyasu Kita, Miyazaki University.
We consider the initial value problem for the Benjamin-Ono equation:
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(0.1) { O+ H,0ou + ud,u = 0, x,t € R,

u(z,0) = up(x), r € R,

where H, denotes the Hilbert transform, i.e., H, = F~'(—i£/|¢|)F. The equation (0.1)
arises in the study of long internal gravity waves in deep stratified fluid.

We present the time local well-posedness of (0.1). Namely, we prove the existence,
uniqueness of the solution and the continuous dependence on the initial data. There
are several known results about this problem. One of their concern is to overcome the
regularity loss arising from the nonlinearity. Because of this difficulty, the contraction
mapping principle via the associated integral equation does not work as long as we consider
the estimates only in the Sobolev space H:°, where H®® is defined by

Hy* = {f € S'(R); [ fllmze < o0}

with [|fllgze = [[(2)*(Da)* fllzz, (2)* = (1 + 2*)** and (D,)* = F1(£)*F. Indeed,
Molinet-Saut-Tzvetkov [6] negatively proved the solvability of the integral equation in
H:? for any s € R.

Recently, Koch-Tzvetkov [4] (see also Ponce [7]) have studied the local well-posedness
with s > 5/4 due to the cut off technique of Fu(€). Furthermore, Kenig-Koenig [2] proved
the local well-posedness with s > 9/8. We remark here that it is possible to minimize the
regularity of ug by inducing another kind of function space. In fact, Kenig-Ponce-Vega
[3] construct a time local solution via the integral equation by applying the smoothing
property like

1D: [Vt = )P ()t iz < CIFlzas,

t
0

where [lul| 25y = ([

LT[O,T])“LQ(R), D:IJ = f_1|§|f and V(t) = eXp(_t%xai) They
obtained the time local well-posedness in H3 (s > 1) for the cubic nonlinearity (Their
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argument is also applicable to the quadratic case if uq satisfies ug € H2? (s > 1) and the
additional weight condition). In their result, however, the smallness of the initial data is
required. This is because the inclusion Ly (L) - L°(L7) C Ly(L7) yields [Jul|ryrs) in
the nonlinearity and we can not expect that ||ul[11(ze0) — 0 even when T'— 0.

Our concern in this talk is to remove this smallness condition of uy. Before presenting
the rough sketch of our idea, we introduce the function space Y in which the solution is
constructed:

Yr ={u:[0,T] x R = R; |u|y, < <},
where [Jully, = [[ull pzo(zoq ey + (@) (D) 2ull e o)+ 1{Da) (@) M ull 2 (ge) with
p, ;v > 0 sufficiently small and 0 < € < p. We first consider the modified equation such
that
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0.2) { Oyuy, + H,p 050, + u,0,m, * u, =0,

u, (0, ) = up(x),

where 7, (z) = v !n(z/v) with n € C§°, [ n(z)dx =1 and v € (0,1]. Then, the existence
of u, in Y easily follows and it is continuated as long as [|u, (t)|| s, 55101 < 00. Note
that ||u, ||y, is continuous with respect to 7. To seek for the a priori estimate of ||u, |y,
we deform (0.2). Let ¢ € C§°(R) and write w,0,1, * u, = 00, * ty, + (uy, — ©)0pny * Uy
Note here that, if ¢ is close to ugy, one can make u, — ¢ sufficiently small when ¢ — 0.
To control ¢(d,n, * u,), we employ the gauge transform so that this quantity is, roughly
speaking, absorbed in the linear operator. Then, our desired a priori estimate follows via
the integral equation. As for the convergence of nonlinearity u, 0,7, * u, — u0,u, we also
consider the estimate of u, — u,s. Let us now state our main theorem.

Theorem 0.1 (i) Let ug € HS' N H: = XS with sy +a;p < s, 1/2 < 51 and 1/2 <
a; < 1. Then, for some T = T(uy) > 0, there ezists a unique solution to (0.1) such that
ue O([0,T]; X*) N Y.

(11) Let u'(t) be the solution to (0.1) with the initial data ug satisfying ||uy — uo||xs < 0.
If 6 > 0 is sufficiently small, then there exist some T' € (0,T) and C > 0 such that

[t = ullzes (xo) < Cllug — uollx,

@) (Da 2w = W)l e g, < Cldy — ol

XS.

In Theorem 0.1, the conditions on the initial data are determined by the estimate of
maximal function, where, we call ||f(-, z)||z the maximal function of f(¢,x). Concretely
speaking, the quantity [[u||z1(ze) is bounded by C(||uol| gso + [[uol| gaet) -

Remark. Recently, Tao [8] has studied the global well-posedness in H!** but the L%
stability of the data-to-solution map holds while the initial data belongs to H', i.e.,
[/ (t) = w(®)||> < Cllug — uoll 0.



We also remark that Koch-Tzvetkov [6] negatively proved the strong stability like

[/ (#) = u(?)]

if there is no weight condition on uy and ug. Though our result requires slightly large
regularity in comparison with Tao’s work, it suggests that the additional weight condition
yields the strong stability of the data-to-solution map in the sense that its target space
coincides with that of initial data. Recently, Professor Keiichi Kato [1] obtained the
similar result via the Fourier restriction method.

a0 < Cllug — ugl[gso  for s >0,
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