2004年10月23日 神楽坂解析セミナー

Propagation of Singularities for semilinear Wave Equations with nonlinearity satisfying null condition

Shingo Ito (Science Univercity of Tokyo)

We consider the propagation of singularities for the following semilinear wave equation,

$$\Box u = f(u)\{(\partial_t u)^2 - |\nabla u|^2\} + g(u),$$

where

$$x = (t, x_1, \cdots, x_{n-1}) \in \mathbf{R}^n, \quad \Box \equiv (\partial^2 / \partial_t^2) - \Delta, \quad \Delta = \sum_{i=1}^{n-1} \frac{\partial^2}{\partial x_i^2}, \quad f, g \in C^{\infty}.$$

Definition 1. We say that a subset K of $\mathbf{R}^n_x \times (\mathbf{R}^n_{\xi} \setminus \{0\})$ is a conic set if $(x, \xi) \in K$ implies that $(x, t\xi) \in K$ for any t > 0.

Definition 2. We call u is in $H_{ml}^{\tau}(x_0, \xi_0)$ if there exists a smooth function $\phi(x)$ supported near x_0 with $\phi(x_0) = 1$ and a conic neighborhood K of ξ_0 in $\mathbb{R}^n \setminus \{0\}$ such that

$$\langle \xi \rangle^{\tau} \chi_K(\xi) | \widehat{\phi u}(\xi) | \in L^2(\mathbf{R}^n)$$

where $\chi_K(\xi)$ is the characteristic function of K and $\langle \xi \rangle = (1 + \sum \xi_i^2)^{1/2}$. If Γ is a closed conic set in $\mathbf{R}_x^n \times (\mathbf{R}_{\xi}^n \setminus \{0\})$ (that is, conic in the ξ variables), we shall say that $u \in H_{ml}^{\tau}(\Gamma)$ if $u \in H_{ml}^{\tau}(x, \xi)$ for all $(x, \xi) \in \Gamma$.

Definition 3. Let $p(x,\xi)$ is a characteristic polynomial of differential operator P. The curves x(s), $\xi(s)$ are bicharacteristics if

$$\frac{dx_j}{ds} = \frac{\partial p}{\partial \xi_j}(x(s), \ \xi(s)), \quad \frac{d\xi_j}{ds} = -\frac{\partial p}{\partial x_j}(x(s), \ \xi(s)) \qquad (j = 1, \ \cdots, \ n.)$$

Since $\sum_{j=1}^{n} \left(\frac{\partial p}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial p}{\partial x_j} \frac{\partial}{\partial \xi_j} \right) p = 0$ we see that p is constant on each of these curves

; one on which pvanishes is called a null-bicharacteristic of p.

Theorem 4. Suppose that U is an neighborhood of x_0 and f, g is C^{∞} . Suppose that $u \in H^s(U), s > n/2$, satisfies

$$\Box u = f(u)\{(\partial_t u)^2 - |\nabla u|^2\} + g(u),$$

Let Γ denote a null bicharacteristic for \Box and suppose that

 $u \in H^r_{ml}(x_0, \xi_0)$ for some point (x_0, ξ_0) on Γ ,

then $u \in H^r_{ml}(\Gamma)$ for $n/2 < s \leq r \leq 2s - n/2$.

References

[1] M. Beals, and M. Reed, Propagation of singurarities for hyperbolic pseudodifferential operators with non-smooth coefficients, Comm. Pure Appl. Math. 35, 1982, pp. 169-184.

[2] M. Beals, Propagation of Smoothness for Nonlinear Second-Order Strictly Hyperbolic Differential Equations, Proc. Symp. Pure. Math. 43, 1985, pp. 21-44.

[3] J.M.Bony, Calcul symbolique et propagation des singularités pour les équations aux derivées partielles nonlineaires, Ann. Sci. École Norm. Sup. 14, 1981, pp. 209-246

[4] L. Hörmander, On the Existence and the Regularity of Solutions of Linear Pseudo-Differential Equations, Enseignment Math. 17, 1971, pp. 99-163.

[5] _____, Linear differential operators, Actes. Congr. Inter. Math. Nice 1, 1970, 121-133.

[6] S. Klainerman, *The null condition and global existence to nonlinear wave equations*, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), 293–326, Lectures in Appl. Math., 23,

 [7] Y. Meyer, Régularité des solutions des équations aux derivées partielles non linéaires, Sem. Bourbaki, no.560, 1979-1980

[8] L. Nirenberg, *Lectures on Linear Partial Differential Equations*, CBMS Regional Conf. Ser.in Math.17, Amer. Math. Soc. Providence, RT.I.1973

[9] J. Rauch, Singularities of solutions to semilinear wave equations, J. Math. Pures et Appl.58,1979, pp. 299-308

[10] J, Rauch, and M. Reed, Propagation of singularities for semilinear hyperbolic systems in one space variable, Ann. of. Math. (2), 1980, pp. 531-552.

[11] M. Reed, Propagation of Singularities for Nonlinear Wave Equations in One Dimension, Comm. P.D.E, (3), 1978, pp. 153-199.

[12] M.Taylor, *Pseudo-Differential Operators*, Lecture Notes in Math, Vol.416, Springer-Verlag, Berlin and New York, 1974.