Sobolev Continuity of a Certain Class of Operators in a Slab Domain in \mathbb{R}^2

Hideo Ueda

Dept. of Math. Osaka University February 26, 2005

In this talk, we consider a Dirichlet problem for the Laplacian in a domain with a corner of conical type in \mathbb{R}^2 . If that domain is a wedge, then some solutions of that problem are constructed by Mellin transformation concretely, see [5].

We deal with that formula of solutions from the point of view of symbolic calculus. We map that domain into $\mathbb{R} \times [0,1]$ by an appropriate coordinate transformation and introduce a new symbol class and corresponding class of operators. We can construct a global parametrix of that problem in $\mathbb{R} \times [0,1]$ for Sobolev class by means of the symbolic calculus of that class in the form of Theorem 6.

We denote $S = S(\mathbb{R})$, $H^s = H^s(\mathbb{R})$, $s \in \mathbb{R}$. Let K be a domain in \mathbb{R}^2 . Then for $f \in C^{\infty}(\mathbb{R}^2 \times K)$ $\partial_{(\beta)}^{(\alpha)} f$ denotes $\partial_x^{\alpha_1} \partial_{\xi}^{\alpha_2} \partial_{\mu_0}^{\beta_1} \partial_{\mu_1}^{\beta_2} f(x, \xi, \mu_0, \mu_1)$, $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2) \in \mathbb{N}_0^2$. We set $K_1 = \{(\mu_0, \mu_1); 0 \le \mu_1 \le \mu_0 \le 1\}$ and $K_{-1} = \{(\mu_0, \mu_1); 0 \le \mu_0 \le \mu_1 \le 1\}$. For $\mu \in [0, 1]$ we set $I_1^{(\mu)} = [0, \mu]$ and $I_{-1}^{(\mu)} = [\mu, 1]$.

Definition 1 (Ueda [3]) Let $m \in \mathbb{R}$, $\lambda > 0$, $0 \le \delta \le \rho \le 1$, $\delta < 1$ and $i = \pm 1$. We denote by $\mathcal{A}_{\rho,\delta,i}^{m,\lambda}$ the set of all $a \in C^{\infty}(\mathbb{R}^2 \times K_i)$ such that for every $\alpha = (\alpha_1, \alpha_2), \beta \in \mathbb{N}_0^2$ and $0 < \nu < \lambda$

$$\sup_{\mathbb{R}^2 \times K_i} \left| \partial_{(\beta)}^{(\alpha)} a(x, \xi, \mu_0, \mu_1) \right| \langle \xi \rangle^{-m + \rho \alpha_2 - \delta \alpha_1 - |\beta|} \exp\left(\nu |\mu_1 - \mu_0| \langle \xi \rangle\right)$$

is finite.

The next is a symbol class including the symbol class in Definition 1.

Definition 2 (Ueda [4]) Let $m \in \mathbb{R}$, $0 \le \delta \le \rho \le 1$, $\delta < 1$ and $i = \pm 1$. We denote by $\mathcal{C}^m_{\rho,\delta,i}$ the set of all $c \in C^{\infty}(\mathbb{R}^2 \times K_i)$ such that for every $\alpha = (\alpha_1, \alpha_2), \beta \in \mathbb{N}_0^2$

$$\begin{split} \sup_{\mathbb{R}^2 \times K_i} & \left| \partial_{(\beta)}^{(\alpha)} c(x, \xi, \mu_0, \mu_1) \right| \langle \xi \rangle^{-m + \rho \alpha_2 - \delta \alpha_1 - |\beta|}, \\ \sup_{\mathbb{R}^2 \times [0,1]} & \int_{I_i^{(\mu_0)}} \left| \partial_{(\beta)}^{(\alpha)} c(x, \xi, \mu_0, \mu_1) \right| d\mu_1 \langle \xi \rangle^{-m + 1 + \rho \alpha_2 - \delta \alpha_1 - |\beta|}, \end{split}$$

$$\sup_{\mathbb{R}^2 \times [0,1]} \int_{I^{(\mu_1)}} \left| \partial_{(\beta)}^{(\alpha)} c(x,\xi,\mu_0,\mu_1) \right| d\mu_0 \langle \xi \rangle^{-m+1+\rho\alpha_2-\delta\alpha_1-|\beta|}$$

are finite respectively.

An analogous result holds over $\mathcal{C}^{\infty}_{\rho,\delta,i}$ to Hörmander's theorem about the asymptotic expansion in $\mathcal{S}^{\infty}_{\rho,\delta}$.

Definition 3 A linear operator C on $C^0([0,1];\mathcal{S})$ is said to belong to the class $\operatorname{Op} \mathcal{C}^m_{\rho,\delta}$, if there exists $c_i \in \mathcal{C}^m_{\rho,\delta,i}$, $i=\pm 1$, such that

$$Cw(\cdot, \mu_0) = \sum_{i=\pm 1} \int_{I_i^{(\mu_0)}} c_i(X, D_x, \mu_0, \mu_1) w(\cdot, \mu_1) d\mu_1.$$
 (1)

We shall write $C = \mathrm{OP}(c_1, c_{-1})$ for an operator $C \in \mathrm{Op}\,\mathcal{C}^m_{\rho,\delta}$ given in the form (1).

The following are our main results.

Theorem 4 The class $\bigcup_{m\in\mathbb{R}} \operatorname{Op} \mathcal{C}^m_{\rho,\delta}$ is an algebra in the following sense:

- (i) If $C_j \in \operatorname{Op} \mathcal{C}_{\rho,\delta}^{m_j}$, j = 1, 2, then we have $C_1 C_2 \in \operatorname{Op} \mathcal{C}_{\rho,\delta}^{m_1 + m_2 1}$.
- (ii) If $C \in \operatorname{Op} \mathcal{C}^m_{\rho,\delta}$, then we have $C^* \in \operatorname{Op} \mathcal{C}^m_{\rho,\delta}$.

The next is obtained by using Theorem 4 and multiple symbols of pseudodifferential operators studied in [1].

Theorem 5 Every operator in $\operatorname{Op} \mathcal{C}^m_{\rho,\delta}$ is continuous from $H^l((0,1); H^s)$ to $H^{\gamma}((0,1); H^{s-m+1-\gamma})$ for all $m, s \in \mathbb{R}$, $l \in \mathbb{N}_0$ and $\gamma = 0, \ldots, l+1$.

Let L be a uniformly elliptic differential operator of second order with complex valued \mathcal{B}^{∞} coefficients in $\mathbb{R} \times [0,1]$ which have proper ellipticity at some point in $\mathbb{R} \times [0,1]$ and $\partial_{\mu_0}^2 + 2a_1(x,\mu_0)\partial_x\partial_{\mu_0} + a_2(x,\mu_0)\partial_x^2$ be the principal part of L.

We set
$$\lambda = \sqrt{a_2 - a_1^2}$$
, $\sigma = 2^{-1/2} \inf_{\mathbb{R} \times [0,1]} (\operatorname{Re} \lambda - |\operatorname{Im} a_1|)$ and set

$$t_{1}(x,\xi,\mu_{0},\mu_{1}) = \exp\left(\sqrt{-1} (\mu_{1} - \mu_{0})a_{1}(x,\mu_{0})\xi\right) \sinh(\mu_{1}\lambda(x,\mu_{0})\xi)$$

$$\times \frac{\sinh((\mu_{0} - 1)\lambda(x,\mu_{0})\xi)}{\sinh(\lambda(x,\mu_{0})\xi)} (\lambda(x,\mu_{0})\xi)^{-1},$$

$$t_{-1}(x,\xi,\mu_{0},\mu_{1}) = \exp\left(\sqrt{-1} (\mu_{1} - \mu_{0})a_{1}(x,\mu_{0})\xi\right) \sinh((\mu_{1} - 1)\lambda(x,\mu_{0})\xi)$$

$$\times \frac{\sinh(\mu_{0}\lambda(x,\mu_{0})\xi)}{\sinh(\lambda(x,\mu_{0})\xi)} (\lambda(x,\mu_{0})\xi)^{-1}.$$

We have that σ is positive and $t_i \in \mathcal{A}_{1,0,i}^{-1,\sigma}$, $i = \pm 1$, see [3]. We put $T = \mathrm{OP}(t_1, t_{-1})$. Then we obtain **Theorem 6** One can find $F_j \in \operatorname{Op} C^0_{1,0}$, j = 1, 2, which satisfies the following:

(i) If $w \in L^2((0,1); H^s)$, then we have

$$(LT(I+F_1)-I)w = K_1w$$

where $K_1 \in \bigcap_{m \in \mathbb{R}} \operatorname{Op} \mathcal{C}_{1,0}^m$.

(ii) If $w \in H^2((0,1); H^s)$ with $w(\cdot, 0) = w(\cdot, 1) = 0$, then we have

$$((I+F_2)TL-I)w = K_2w$$

where $K_2 \in \bigcap_{m \in \mathbb{R}} \operatorname{Op} \mathcal{C}_{1,0}^m$.

(iii) If $w \in L^2((0,1); H^s)$, $w_0, w_1 \in H^{r+3/2}$ and $f \in L^2((0,1); H^r)$ satisfy that

$$\int_{0}^{1} (w(\cdot, \mu_{0}), L^{*}\varphi(\cdot, \mu_{0})) d\mu_{0}$$

$$= \int_{0}^{1} (f(\cdot, \mu_{0}), \varphi(\cdot, \mu_{0})) d\mu_{0} + \sum_{j=0}^{1} (-1)^{j+1} (w_{j}, a_{2}(\cdot, j)\partial_{\mu_{0}}\varphi(\cdot, j))$$

for all $\varphi \in C^2([0,1];\mathcal{S})$ with $\varphi(\cdot,0) = \varphi(\cdot,1) = 0$, then we have $\partial_x^{\beta} \partial_{\mu_0}^{\gamma} w \in L^2((0,1);H^{r+2-\beta-\gamma}), \ \beta \in \mathbb{N}_0, \ \gamma = 0,1,2, \ and \ w(\cdot,j) = w_j, \ j = 0,1.$

(iii) of Theorem 6 is proved by using only Theorem 5, (i) and (ii) of Theorem 6 and Riesz's Theorem.

References

- H. Kumano-go, Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem, J. Math. Soc. Japan, 27 (1975), 113–120.
- [2] B.-W. Schulze, Pseudo-Differential Operators on Manifolds with Singularities, North-Holland, Amsterdam, 1991.
- [3] H. Ueda, On an algebra of a certain class of operators in a slab domain in R², Ann. Glob. Anal. and Geom., 16 (1998), 477–495.
- [4] H. Ueda, Sobolev Continuity of a Certain Class of Operators in a Slab Domain in ℝ², Preprint, Osaka University, 2004.
- [5] A. H. Zemanian, Generalized Integral Transformations, Interscience Publishers, New York, 1968.