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In this talk, I am going to talk about the existence of the weak solutions to
the Navier-Stokes-Poisson equation. The results in this talk were obtained in
a joint work with Takashi SUZUKI (Osaka Univ.). We consider the Navier-
Stokes-Poisson equation

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu⊗ u) + ρ∇Φ + a∇ργ = µ∆u + (λ + µ)∇(∇ · u)

∆Φ = 4πg

(
ρ− 1

|Ω|
∫

Ω
ρ

)
in Ω× (0, T ) (1)

with the initial-boundary condition

u = 0,
∂Φ

∂ν
= 0 on ∂Ω× (0, T )

ρ|t=0 = ρ0(x), (ρu)|t=0 = q0(x) in Ω, (2)

where Ω ⊂ R3 is a bounded domain with C2,θ boundary ∂Ω (0 < θ < 1), ν
the outer normal vector, ρ = ρ(x, t) the density,

u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

the velocity, Φ = Φ(x, t) the Newtonian gravitational potential, γ > 1 the
adiabatic constant, µ > 0 and λ the viscosity constants satisfying λ+ 2

3
µ ≥ 0,

a = eS the constant determined by the entropy S, and g > 0 the gravita-
tional constant. Physically, this system describes the motion of compressible
viscous isentropic gas flow under the self-gravitational force.
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The equation (1) is provided with the properties of the conservation of
total mass M =

∫
Ω ρ and the decrease of total energy E;

E =
∫

Ω

(
ρ

2
|u|2 +

P

γ − 1

)
+

g

2

∫ ∫

Ω×Ω
G(x, y)ρ(x)ρ(y)dxdy

=
a

γ − 1
‖ρ‖γ

γ +
1

2
‖√ρu‖2

2 −
1

8πg
‖∇Φ‖2

2 ,

and here, P = aργ and G = G(x, y) denote the pressure and the Green’s
function of the Poisson part, respectively, so that Φ(x) = g

∫
Ω G(x, y)ρ(y)dy

if and only if

∆Φ = 4πg

(
ρ− 1

|Ω|
∫

Ω
ρ

)
in Ω,

∂Φ

∂ν
= 0 in ∂Ω,

∫

Ω
Φ = 0. (3)

Our result on the non-equilibrium state is regarded as the generalization of
Feireisl, Nevotný, and Petzeltová [3] concerning the Navier-Stokes equation
without the Poisson term; more precisely,

Theorem 1 Let T > 0 and γ > 3
2
. Then, given ρ0 ∈ Lγ(Ω) and |qi

0|2 /ρ0 ∈
L1(Ω) with ρ0 = ρ0(x) ≥ 0 and qi

0(x) = 0 for x of ρ0(x) = 0, we have a finite
energy weak solution ρ, u, Φ to (1) satisfying the following.

1. ρ = ρ(x, t) ≥ 0, ρ ∈ L∞ (0, T ; Lγ(Ω)), ui ∈ L2 (0, T ; H1
0 (Ω)).

2. E = E(t) ∈ L1
loc(0, T ).

3. dE
dt

+ µ ‖∇u‖2
2 + (λ + µ) ‖∇ · u‖2

2 ≤ 0 in D′(0, T ).

4. The first two equations of (1) hold in D′ (Ω× (0, T )).

5. Φ(·, t) = g
∫
Ω G(·, y)ρ(y, t)dy for a.e. t ∈ (0, T ).

6. The first equation of (1) holds in D′ (R3 × (0, T )) if the zero extension
is taken outside Ω to ρ, u.

7. The first equation of (1) is satisfied in the sense of the renormalized
solution, i.e.,

d

dt
b(ρ) +∇ · (b(ρ)u) + (b′(ρ)ρ− b(ρ))∇ · u = 0 (4)

in D′ (Ω× (0, T )) for any b ∈ C1(R) such that b′(z) = 0 if |z| is large.
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