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Let us first impose the following assumption on the domain Ω:

Assumption. Ω is a bounded domain in R
3 with the C2+μ-boundary ∂Ω, where μ > 0.

We denote by C∞
0,σ(Ω) the set of all C∞-vector functions ϕ = (ϕ1, ϕ2, ϕ3) with compact

support in Ω, such that div ϕ = 0. Lr
σ(Ω) is the closure of C∞

0,σ(Ω) with respect to the Lr-norm
‖ · ‖r; (·, ·) denotes the duality pairing between Lr(Ω) and Lr′(Ω), where 1/r + 1/r′ = 1. Lr(Ω)
stands for the usual (vector-valued) Lr-space over Ω, 1 < r < ∞. Let us define the space V r(Ω)
by

V r(Ω) ≡ {u ∈ Lr(Ω); div u ∈ Lr(Ω), rot u ∈ Lr(Ω), u × ν|∂Ω = 0}, 1 < r < ∞.(0.1)

It is easy to see that if u ∈ Lr(Ω) with rot u ∈ Lr(Ω), then it holds u × ν ∈ W 1−1/r′,r′(∂Ω)∗.
Equipped with the norm ‖u‖V r

‖u‖V r ≡ ‖div u‖r + ‖rot u‖r + ‖u‖r,

we may regard V r(Ω) as a closed subset of W 1,r(Ω). Indeed, we have that V r(Ω) ⊂ W 1,r(Ω)
with

‖∇u‖r ≤ C‖u‖V r for all u ∈ V r(Ω),(0.2)

where C = C(r) is a constant depending only on r. Furthermore, we define V r
σ (Ω) by

V r
σ (Ω) ≡ {u ∈ V r(Ω); div u = 0 in Ω}.

Finally, we denote by H(Ω) the space of harmonic vector fileds on Ω

H(Ω) ≡ {h ∈ C∞(Ω) ∩ C2(Ω̄); div h = 0, rot h = 0 in Ω, h · ν|∂Ω = 0}.(0.3)

It is well-known that the dimension of H(Ω) is finite. For more precise characterization of H(Ω),
see Remark 1 (2) below.

Our main result now reads

Theorem 1 Let Ω be as in the Assumption. Suppose that 1 < r < ∞. Then for every u ∈
Lr(Ω), there are p ∈ W 1,r(Ω), w ∈ V r

σ (Ω) and h ∈ H(Ω) such that u can be represented as

u = h + rot w + ∇p.(0.4)
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Such a triplet {p,w, h} is subordinate to the estimate

‖∇p‖r + ‖w‖V r + ‖h‖r ≤ C‖u‖r(0.5)

with the constant C = C(r) independent of u. The above decompostion (0.4) is unique. In fact,
if u has another expression

u = h̃ + rot w̃ + ∇p̃

for h̃ ∈ H(Ω), w̃ ∈ V r
σ (Ω) and p̃ ∈ W 1,r(Ω), then we have

h = h̃, rot w = rot w̃, ∇p = ∇p̃.(0.6)

An immediate consequence of the above theorem is

Corollary 1 Let Ω be as in the Assumption. By the unique decomposition (0.4) we have

Lr(Ω) = H(Ω) ⊕ rot V r
σ (Ω) ⊕∇ W 1,r(Ω), 1 < r < ∞. (direct sum)(0.7)

Let Sr, Rr and Qr be projection operators associated to (0.4) from Lr(Ω) onto H(Ω), rot V r
σ (Ω)

and ∇ W 1,r(Ω), respectively, i.e.,

Sru ≡ h, Rru ≡ rot w, Qru ≡ ∇p.(0.8)

Then we have
‖Sru‖r ≤ C‖u‖r, ‖Rru‖r ≤ C‖u‖r, ‖Qru‖r ≤ C‖u‖r(0.9)

for all u ∈ Lr(Ω), where C = C(r) is the constant depending only on 1 < r < ∞. Moreover,
there holds ⎧⎨

⎩
S2

r = Sr, S∗
r = Sr′ ,

R2
r = Rr, R∗

r = Rr′

Q2
r = Qr, Q∗

r = Qr′ ,
(0.10)

where S∗
r , R∗

r and Q∗
r denote the adjoint operators on Lr′(Ω) of Sr, Rr and Qr, respectively.

Remark 1. (1) It is known that

Lr(Ω) = Lr
σ(Ω) ⊕∇ W 1,r(Ω), 1 < r < ∞, (directsum).(0.11)

See Fujiwara-Morimoto [4], Solonnikov [11] and Simader-Sohr [9]. Our decomposition (0.7) gives
a more precise direct sum of Lr

σ(Ω) such as

Lr
σ(Ω) = H(Ω) ⊕ rot V r

σ (Ω), 1 < r < ∞. (direct sum)(0.12)

(2) Suppose that the boundary ∂Ω has L + 1 connected components Γ0,Γ1, · · · ,ΓL of C2-
surfaces such that Γ1, · · · ,ΓL lie inside of Γ0 with Γi ∩ Γj = φ for i �= j, and scuh that

∂Ω =
L⋃

j=0

Γj .(0.13)
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Moreover, we assume that there are N C2-surfaces Σ1, · · · ,ΣN such that Σi ∩ Σj = φ for i �= j,
and such that

Ω̇ ≡ Ω \ Σ,Σ ≡
N⋃

j=1

Σj is simply connected.(0.14)

Then Foias-Temam [3] showed that

dim.H(Ω) = N.(0.15)

They [3] also gave an orthogonal decompostion of L2
σ(Ω) such as

L2
σ(Ω) = H(Ω) ⊕ H1(Ω) (orthogonal sum in L2(Ω)),

where
H1(Ω) ≡ {u ∈ L2

σ(Ω);
∫

Σj

u · νdS = 0, j = 1, · · · , N}.

Yoshida-Giga [13] investigated the operator rot with its domain D(rot) = {u ∈ H1(Ω); rot u ∈
H1(Ω)} and showed that H1(Ω) = rot V 2

σ (Ω). Futhermore, they [13] gave another type of
orthognal L2-decomposition of vector fileds u ∈ D(rot). From our decomposition (0.12) with
r = 2, it follows also that H1(Ω) = rot V 2

σ (Ω).
(3) In the case when Ω is a star-shaped domain, Griesinger [5] gave a simlar decomposition

in Lr(Ω) for 1 < r < ∞. In her case, it holds N = 0. Since she took the smaller space W 1,r
0 (Ω)

than our space V r(Ω), it seems to be an open question whether, in the same way as in (0.7),
the anihilator rot W 1,r

0 (Ω)⊥ of rot W 1,r
0 (Ω) in Lr′(Ω) coinsides with ∇ W 1,r′(Ω).

As an application of our decomposition, we have the following gradeint estimates of vector
fields via div and rot .

Corollary 2 Assume that 1 < r < ∞.
(1) Let u ∈ Lr(Ω) with div u ∈ Lr(Ω), rot u ∈ Lr(Ω) and u · ν|∂Ω = 0. Then we have

u ∈ W 1,r(Ω) with the estimate

‖∇u‖r ≤ C(‖div u‖r + ‖rot u‖r + ‖u‖1),(0.16)

where C = C(r) is the constant independent of u.
(2) Let u ∈ W s,r(Ω) for s > 1 + 3/r with u · ν|∂Ω = 0. Then we have ∇u ∈ L∞ with the

estimate

‖∇u‖∞ ≤ C {1 + ‖u‖r + (‖div u‖bmo + ‖rot u‖bmo) log(e + ‖u‖W s,r)} ,(0.17)

where C = C(r) is the constant independent of u. For definition of the bmo-norm, see Remark
2 below.

Remark 2. (1) Let us recall the bmo-norm in Ω. For f ∈ L1
loc(R

3), we define ‖f‖bmo(�3) by

‖f‖bmo(�3) = sup
x∈�3,0<R<1

1
|BR(x)|

∫
BR(x)

|f(y) − fBR(x)|dy + sup
x∈�3

1
|B1(x)|

∫
B1(x)

|f(y)|dy
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with fBR(x) =
1

|BR(x)|
∫

BR(x)
f(y)dy, where BR(x) denotes the ball in R

3 centered at x with

radius R and |BR(x)| is its volume. For g ∈ L1
loc(Ω) we say g ∈ bmo(Ω) if there is an extension

f ∈ bmo(R3) such that g = f on Ω. The bmo-norm ‖g‖bmo of g on Ω is defined by

‖g‖bmo ≡ inf{|f‖bmo(�3); f ∈ bmo(R3), f = g on Ω}.

(2) von Wahl [12] proved that (0.16) without ‖u‖1 on the right hand side holds if and only
if N = 0, i.e., Ω is simply connected. He also showed the same estimate for u ∈ W 1,r(Ω) with
u × ν = 0 on ∂Ω if and only if L = 0. Our variational inequality makes it possible to prove
(0.16) also for u ∈ W 1,r(Ω) with u× ν = 0 on ∂Ω. von Wahl’s estimate [12] may be regarded as
a special case of ours sicnce we can treat the general case such as (0.13) and (0.14). His method
is based on the representation formula for u ∈ W 1,r(Ω) via div u and rot u which is different
from ours.

(3) In R
3, by means of the Biot-Savard law, Beale-Kato-Majda [1] and Kozono-Taniuchi [6]

obtained a similar estimate to (0.17) for u ∈ W s,r(R3) with s > 1 + 3/r. More generalized
version in the homogeneou Besov space Ḃ0∞,∞ is found in Kozono-Ogawa-Taniuch [7]. In the
case of simply connected bounded domains Ω in R

3, Ferrari showed (0.17) for div u = 0 with
u · ν|∂Ω = 0. More general case such as (0.13) and (0.14) was treated by Shirota-Yanagisawa
[10] and Ogawa-Taniuchi [8].
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