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It is well known that Besov spaces are very usefull in studying many
problems. I report here their applications to the evolution equation:

(EE) du/dt + A(t)u = f(t), a <t <D,

where —A(t) is the generator of a semigroup of linear operators in a
Banach space X. We consider only ‘ parabolic type’. Namely, we
assume that
(A1) —A(t) is a linear operator with dense domain, and there exist
constants k > /2 and Cy such that the resolvent set of —A(¢) contains
the sector ¥, := {\ € C; |arg\| < k} for any t € [ := [a,b] and
IINA+ A(t) Y| xx < Cp holds for any A € ¥, and any ¢ € I.
Therefore,— A(t) generates an analytic semi-group {e~"4®:7 > 0}
on X.
Case 1. A(t) = A is independent of ¢. Crandall-Pazy, 1969, proved

t
that F(t) := / e "D4f(s)ds is strongly differentiable and satisfies

(EE) if the modulus of continuity w(h : f) of f is integrable near 0
with the measure dh/h. Furthermoere, Baillon, 1980, showed that if F’
is differantiable for every continuous function f then X has a spacial
property or A is bounded. We prove that F' is strongly differantiable
and satisfies (EE) if f belongs to BY, | (I; X )i N L' (I; X), T := (a,b) (
J.Math.Soc. Japan, 1990).

Case 2. The domain D(A(t)) of A(t) is independent of ¢, which we
write by Y. Tanabe, 1960, has constructed the evolutin operator U (¢, )
to (EE) when A(t) is Holder continuous £(Y, X)-valued function. We
have improved his result, that is, we have constructed it under the
assumption that the modulas of continuity w(h) of A(t) as an L(Y, X)-
valued function is integrable near 0 with dh/h( Osaka J. Math. 2001).
We also showed that F'(t) := ['U(t, s)f(s)ds is strongly differentiable

and satisfies (EE) if f satisfies the same conditon as in Case I.

Case 3. The domain D(A(t)'/™) is independent of ¢, where m is some
positive integer m greater than 1. We put Y = D(A(¢)"/™). Assuming
that A(¢)'/™ is Holder continuous with a exponent 6 greater than 1 —
1/m as an L(Y, X)-valued function, T. Kato, 1961, has constructed the
evolution operator. We recently improved his result. Our assumption
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is ‘A(t) belongs to B;i/m(f; L(Y,X)). We also have the same result
for F' as in Case 2.

Case 3. A. Yagi (1988) and Acquistapace-Terreni (1986) have con-
structed the evolution operator to (EE) under the following assump-
tions:

(A1’) There exist constants k > 7/2 and Cj such that the resolvent set
of —A(t) contains the sector X, for any ¢ € I and |[(A—A(¢)) |xox <
Co/(JA] + 1) holds for any —\ € ¥, and any t € I.

(A3’) For some 0 < 0, <1 with @+n>1, A(t)(A—A@)""{At)™" —
A(s) ™ Yxox < K|t —s"/(JA] + 1)? holds for any s,t € T and A < 0.
K is a constant.

We have improved this result, that is, we proved the following:

Assume (A1) and the following hypotheses (A2), (A3):
(A2) There exist a number ¢ € (0,1) and a Banach space Y continu-
ously imbedded in X such that the domain D(A(t)?) =Y for any t € I
and A(-)? € C(I; L(Y, X)).
(A3) 0 belongs to the resolvet set of A(t) for any ¢ € I and A(t)"! €
BLUT£(X,Y).

Then, there exists the evolution operator to (EE).
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