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この講演は, Yue Liu (University of Texas at Arlington) との共同研究に
基づく. In 1978, Ostrovsky [11] derived an equation for weakly nonlinear
surface and internal waves in a rotating ocean:

∂x(∂tu + αu∂xu + β∂3
xu) = γu, (t, x) ∈ R× R, (1)

where α, β, γ ∈ R, u : R×R→ R. In oceanographic applications, the small-
scale dispersion (the term with β) appears due to influence of oceanic depth,
and the large-scale dispersion (the term with γ) appears due to influence of
Earth rotation. In certain situations, in place of (1), the modified Ostrovsky
equation arises [12]:

∂x(∂tu + α1u
2∂xu + β∂3

xu) = γu. (2)

Note that when γ = 0, (1) and (2) are reduced to the KdV equation and
the modified KdV equation, respectively.

In this talk, we consider the following Ostrovsky-type equation:

∂tu + ∂3
xu + ∂−1

x u + ∂x(|u|p−1u) = 0, (t, x) ∈ R× R, (3)

where 1 < p < ∞ and for k ∈ N the operator ∂−k
x is defined by

∂−k
x v = F−1[(iξ)−kv̂(ξ)].

We study orbital stability of travelling wave solution u(t, x) = ϕc(x− ct) for
(3), where c ∈ R and ϕc is a ground state of

−∂2
xϕ− ∂−2

x ϕ + cϕ− |ϕ|p−1ϕ = 0, x ∈ R. (4)

We define the energy space X by

X = {v ∈ H1(R) : ‖v‖X < ∞}, ‖v‖2
X =

∫

R
(ξ2 + ξ−2)|v̂(ξ)|2 dξ,

and define the energy E and the momentum V by

E(v) =
∫

R

{
1
2
|∂xv|2 +

1
2
|∂−1

x v|2 − 1
p + 1

|v|p+1

}
dx,

V (v) =
∫

R

1
2
|v|2dx.

The energy E and the momentum V are conserved quantities of (3). For
the well-posedness of [11], see [8].
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The equation (4) is considered as the Euler-Lagrange equaiton for the
funtional

Sc(v) = E(v) + cV (v)

=
∫

R

{
1
2
|∂xv|2 +

1
2
|∂−1

x v|2 +
c

2
|v|2 − 1

p + 1
|v|p+1

}
dx

defined on X. We denote the set of all non-trivial solutions for (4) by

Sc = {v ∈ X : S′c(v) = 0, v 6= 0},

and the set of all ground states for (4) by

Gc = {w ∈ Sc : Sc(w) ≤ Sc(v), ∀v ∈ Sc}.

Moreover, we put

Kc(v) =
∫

R

{|∂xv|2 + |∂−1
x v|2 + c|v|2 − |v|p+1

}
dx,

d(c) = inf{Sc(v) : v ∈ X, Kc(v) = 0, v 6= 0},
Mc = {w ∈ X : Sc(w) = d(c), Kc(w) = 0, w 6= 0}.

Note that Kc(v) = ∂λSc(λv)|λ=1 and that if c > −2 then ξ2 + ξ−2 + c > 0
for all ξ ∈ R. It can be proved that if c > −2, then Mc is not empty and
Gc = Mc. We remark that the uniqueness of ground states for (4), up to
translation, is not known.

We say that the travelling wave solution ϕc(x− ct) is orbitally stable in
X if for any ε > 0 there exists δ > 0 such that if ‖u0 − ϕc‖X < δ then the
solution u(t) of (3) with u(0) = u0 exists for all t ∈ R, and satisfies

sup
t∈R

inf
y∈R

‖u(t)− ϕc(·+ y)‖X < ε.

Otherwise, it is said to be orbitally unstable in X.
Here, we recall some known results for related equations. First, we con-

sider the generalized KdV equation:

∂tu + ∂3
xu + ∂x(|u|p−1u) = 0, (t, x) ∈ R× R. (5)

For c > 0, (5) has travelling wave solutions u(t, x) = ψc(x− ct), where ψc is
given by

ψc(x) =
(

(p + 1)c
2

)1/(p−1)

sech2/(p−1)

(
p− 1

2
√

cx

)
,

which is a positive solution of

−∂2
xϕ + cϕ− |ϕ|p−1ϕ = 0, x ∈ R. (6)
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Note that ψc(x) = c1/(p−1)ψ1(
√

cx). It is known that the travelling wave
solution ψc(x − ct) of (5) is orbitally stable in H1(R) when 1 < p < 5 and
c > 0, and is orbitally unstable in H1(R) when p ≥ 5 and c > 0 (see Bona,
Souganidis and Strauss [2] for the case p 6= 5, and Martel and Merle [10] for
p = 5). The same result holds for the nonlinear Schrödinger equation

i∂tu + ∂2
xu + |u|p−1u = 0, (t, x) ∈ R× R. (7)

That is, the standing wave solution eiωtψω(x) of (7) is orbitally stable in
H1(R) when 1 < p < 5 and ω > 0, and is orbitally unstable in H1(R) when
p ≥ 5 and ω > 0 (see [1] and [3]).

Next, we consider nonlinear Schrödinger equation with a harmonic po-
tential:

i∂tu + ∂2
xu− |x|2u + |u|p−1u = 0, (t, x) ∈ R× R. (8)

The energy space for (8) is given by

Σ = {v ∈ H1(R) : xv ∈ L2(R)}.
Note that λ1 = 1 is the first eigenvalue of the operator −∂2

x + |x|2 on L2(R).
For any ω > −λ1, there exists a ground state φω of

−∂2
xφ + |x|2φ + ωφ− |φ|p−1φ = 0, x ∈ R. (9)

The following results were obtained by Fukuizumi and Ohta [5, 6]. When
1 < p < ∞, there exists ω1 > −λ1 such that eiωtφω(x) is orbitally stable
in Σ for all ω ∈ (−λ1, ω1). When 1 < p < 5, there exists ω2 > 0 such
that eiωtφω(x) is orbitally stable in Σ for all ω ∈ (ω2,∞). When p > 5,
there exists ω3 > 0 such that eiωtφω(x) is orbitally unstable in Σ for all
ω ∈ (ω3,∞). Moreover, Fukuizumi [4] proved that when p = 5, there exists
ω4 > 0 such that eiωtφω(x) is orbitally stable in Σ for all ω ∈ (ω4,∞).

The proof for the case where p 6= 5 and ω is large is based on the the
following fact. For ω > 0, we define φ̃ω by

φω(x) = ω1/(p−1)φ̃ω(
√

ωx).

Then, for any sequence {ωj} satisfying ωj → ∞, there exists a sequence
{yj} of R such that {φ̃ωj (·+ yj)} has a subsequence that converges to ψ1 in
H1(R).

Recently, Levandosky and Liu [7] studied orbital stability of ϕc(x − ct)
for (3). By a similar approach to that used by [6] for (8), they proved that
when p > 5, there exists c3 > 0 such that ϕc(x− ct) is orbitally unstable in
X for all c ∈ (c3,∞). See also [9].

The approach in [5] is applicable to the case where 1 < p < 5 and c is
large. That is, we have the following result, which is the main result in this
talk.
Main Result (Y. Liu and M. O.) Let 1 < p < 5 and ϕc ∈ Gc. Then,
there exists c2 > 0 such that the travelling wave solution ϕc(x− ct) of (3) is
orbitally stable in X for all c ∈ (c2,∞).
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