Stability of solitary waves for Ostrovsky equations
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00000, Yue Liu (University of Texas at Arlington) 0000000
O000. In 1978, Ostrovsky [11] derived an equation for weakly nonlinear
surface and internal waves in a rotating ocean:

02 (Opu + audpu + BO2u) = yu, (t,z) € R x R, (1)

where «, 8,7 € R, u: RxR — R. In oceanographic applications, the small-
scale dispersion (the term with ) appears due to influence of oceanic depth,
and the large-scale dispersion (the term with +) appears due to influence of
Earth rotation. In certain situations, in place of (1), the modified Ostrovsky
equation arises [12]:

0 (Opu 4 aru?dpu + BIu) = yu. (2)

Note that when v = 0, (1) and (2) are reduced to the KdV equation and
the modified KdV equation, respectively.
In this talk, we consider the following Ostrovsky-type equation:

o+ Pu+ o, u+ 0, (|uP~tu) =0, (t,z) eR xR, (3)
where 1 < p < oo and for k € N the operator 9, % is defined by
9; "o = FH(i€) T o (€)).

We study orbital stability of travelling wave solution u(t, x) = p.(z —ct) for
(3), where ¢ € R and ¢, is a ground state of

—2p - 0% +ep— Pl =0, zER. (4)
We define the energy space X by

X={ve H'R):|lv|x <oo}, [vlk= /R(E2 +E72)[0(6)[* de,

and define the energy E and the momentum V by

1 1 1
E — ~ 8, 2 “1a-1,2 _ = |, p+1
) = [ {3l0c0 + gloz o - ot La,
1
V(v):/|v|2dm.
R 2

The energy E and the momentum V' are conserved quantities of (3). For
the well-posedness of [11], see [8].



The equation (4) is considered as the Euler-Lagrange equaiton for the
funtional

Se(v) = E(v) + ¢V (v)

1 1 c 1
_ 2100l 4 210102 + Sl — = jupti Ly
[ {310l + glezto + Sl - o Lo

defined on X. We denote the set of all non-trivial solutions for (4) by
Se={veX:5(v)=0, v+#0},
and the set of all ground states for (4) by
Ge ={w € S : Sc(w) < Se(v), Yv e S}

Moreover, we put

Ke(v) = /]R {1000 + (07 0l? + clo]? — [o]P*} da,

d(c) = inf{S.(v) :v e X, K.(v) =0,v # 0},
M. ={we X :S.(w) =d(c), K.(w) =0, w+# 0}

Note that K.(v) = 9xS.(\v)|x=1 and that if ¢ > —2 then &2 + ¢ 24+¢> 0
for all £ € R. It can be proved that if ¢ > —2, then M, is not empty and
G. = M.. We remark that the uniqueness of ground states for (4), up to
translation, is not known.

We say that the travelling wave solution ¢.(x — ct) is orbitally stable in
X if for any € > 0 there exists 6 > 0 such that if |ug — ¢¢||x < 0 then the
solution u(t) of (3) with u(0) = wug exists for all ¢ € R, and satisfies

sup inf ||u(t) — (- +y)|lx <e.
teR yER

Otherwise, it is said to be orbitally unstable in X.
Here, we recall some known results for related equations. First, we con-
sider the generalized KdV equation:

Opu+ Bu+ Oy(lulP~'u) =0, (t,z) € R x R. (5)

For ¢ > 0, (5) has travelling wave solutions u(t,z) = ¥.(x — ct), where 9, is
given by

1/(p-1) _
belz) = (@zl)c> P sech2/ 1) <1921\@$> 7

which is a positive solution of

—Rp+cp—|pPlo=0, zeER. (6)



Note that 1.(x) = /=Dy (y/ex). It is known that the travelling wave
solution 1.(x — ct) of (5) is orbitally stable in H'(R) when 1 < p < 5 and
¢ > 0, and is orbitally unstable in H'(R) when p > 5 and ¢ > 0 (see Bona,
Souganidis and Strauss [2] for the case p # 5, and Martel and Merle [10] for
p =5). The same result holds for the nonlinear Schrédinger equation

iy + 02u + |uPlu =0, (t,z) €ER xR. (7)

That is, the standing wave solution €™, (x) of (7) is orbitally stable in
H'(R) when 1 < p < 5 and w > 0, and is orbitally unstable in H!(R) when
p>5and w > 0 (see [1] and [3]).
Next, we consider nonlinear Schrodinger equation with a harmonic po-
tential:
i0pu 4 O%u — |xPu + [uPlu =0, (t,z) € R x R. (8)

The energy space for (8) is given by
¥ ={ve H(R):zve L*R)}.

Note that A\; = 1 is the first eigenvalue of the operator —92 + |z|? on L?(R).
For any w > —\q, there exists a ground state ¢, of

—Ro+ |zPp+wop — [pPTp =0, xz€R. (9)

The following results were obtained by Fukuizumi and Ohta [5, 6]. When
1 < p < o0, there exists w; > —\; such that e, (x) is orbitally stable
in ¥ for all w € (=Aj,w1). When 1 < p < 5, there exists wa > 0 such
that e“!¢,(z) is orbitally stable in ¥ for all w € (w2,00). When p > 5,
there exists w3 > 0 such that e™“'@, (r) is orbitally unstable in ¥ for all
w € (w3, 00). Moreover, Fukuizumi [4] proved that when p = 5, there exists
wy > 0 such that !¢, (x) is orbitally stable in ¥ for all w € (w4, 00).

The proof for the case where p # 5 and w is large is based on the the
following fact. For w > 0, we define ng by

() = VG, (Vo).

Then, for any sequence {w;} satisfying w; — oo, there exists a sequence
{y;} of R such that {éwj (-+vj;)} has a subsequence that converges to ¢; in
H(R).

Recently, Levandosky and Liu [7] studied orbital stability of ¢.(x — ct)
for (3). By a similar approach to that used by [6] for (8), they proved that
when p > 5, there exists ¢3 > 0 such that ¢.(x — ct) is orbitally unstable in
X for all ¢ € (e3,00). See also [9].

The approach in [5] is applicable to the case where 1 < p < 5 and ¢ is
large. That is, we have the following result, which is the main result in this
talk.

Main Result (Y. Liu and M. O.) Let 1 < p < 5 and ¢. € G.. Then,
there exists ca > 0 such that the travelling wave solution ¢.(x — ct) of (3) is
orbitally stable in X for all ¢ € (¢, 00).
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