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1 Introduction

S. L. Sobolev, in his classical works ([1],[2]), introduced and discussed the spaces

ngm) (Q) of generalized functions on a domain © C R™, now called Sobolev
spaces.

In particular, Sobolev carried out a very detailed analysis when 2 is bounded
and star-shaped with respect to a closed ball K inside it. He considered the
following quotient space

by the equivalence relation
un~v < 0%z) = 0%(x), |a] =m (aexz€)

for u, v € W™ (€). On the other hand, let

]P)mfl — { Z Qo .’L'a}
jalSm—1

be the space of polynomial functions of degree < m — 1. Then he showed the
Banach space isomorphism

wim(Q) =P e L™ ()

using an explicitly constructed projection operator

II: ngm)(ﬂ) Sur Mu(z) = /KI u(y) a,i”z/]w(y)m dy e P71 (1)

Here K,, ¢, and r are to be explained later (during the talk. See [1]).



Note the norm

m l/p
([l = (Z |U|§,k> , e Wm(Q),
k=0

with the homogeneous semi-norm of order k, 0 < k < m:

1/p

3 /Q 0% u(z)|? do

|ulp,r =
la|=k

For each homogeneous semi-norm holds the following estimate, which is (ac-
tualy very close to one sometimes) called the Bramble-Hilbert Lemma (cf. [3]).

Lemma 1  Suppose (2 is bounded and star-shaped with respect to a closed
ball K. Then

[ — Tulp e < Cromoie (1 4+ 7(Q)"T* diameter(Q)™*|ulp.m (2)
for k=0,---,m — 1. Here y(Q2) is the chunkiness parameter of (2

diameter(€2)
maximal radius of closed balls in Q°

() =

Remark 1  (2) is important in discussions of the finite element method. Inci-
dentally, Sobolev’s projection operator II is not an orthogonal projection when

p=2.

2 A rough explanation of the background

Suppose a bounded domain Q with a nice boundary 9 is given. It is expected
that 2 is appproximated by a sequence of the unions of non-overlapping polyg-
onal subdomains Qj, = J, Ak, each Ay i, being star-shaped with respect to a
closed ball inside:
Q=1lmQ, =1 App.
im Q = lim LkJ kh

A given Sobolev function u on 2 may have polygonal approximation py j on
each Ap . Errors are estmated using Lemma 1. Then pp(z) on Qp, where

Pr(z) =prr(z), =€ Apyg

may be expected to approximate u within a certain Sobolev space over €2;,. Then
letting Q4 to 2, we get a sequence of piecewise polynomial approximations of u.
Actually, this depends on €2 and on the choice of the way to define polynomial
approximation on each Ay i. It is the core of the finite element method ([3]).
On the other hand, this approach may shed some light on a construction of a
standard countable dense subset in a Sobolev space, which consists of computable



elements ([4], [5]). Actually, the conventional finite elements do not appear very

convenient, except the simplest Lagrange interpolation (valid in WIEI)(Q) for
uwe WP (Q)).

That is, given a certain problem of mathematical analysis, formulated in
Sobolev spaces, existence and/or uniqueness of the solution is generally obtained
by the classical method of mathematical analysis together with rather rough
behavior of thus obtained solutions. In some case, numerical simulation provides
much more detailed knowledge of the solution. There may be some problems for
which it is known whether the solutions can basically be computable or not, and,
in case the solution is computable, to what extent it is computably complex.
These questions could not be independent each other, but have hardly been
discussed on the common ground.

Here is an effort to provide something common.

References

[1] S. L. Sobolev. Applications of Functional Analysis in Mathematical Physics.
AMS. 1963 (Russian original: 1950).

[2] Serge L. Sobolev. Sur les E‘quations aux Dérivées Patielles Hyperboliques
Non-linéaires. Edizione Cremonese. 1961

[3] Susanne C. Brenner & L. Ridgway Scott. The Mathematical Theory of Finite
Element Methods. Springer. 1994.

[4] Marian B. Pour-El & Tan J. Richards, Computabiity in Analysis and Physics.
Springer-Verlag. 1989.

[5] Klaus Weihrauch. Computable Analysis. Springer. 2000.



