Perturbation theorem for C_0-groups on Hilbert space

Daisuke Fujinawa
Tokyo University of Science

We consider perturbations of C_0-group generators. Let X be a complex Hilbert space. First, we define a C_0-group on X and its generator.

Definition 1. (i) A one-parameter family $\{T(t); t \in \mathbb{R}\}$ is a C_0-group of bounded linear operators if (a) $T(0) = I$; (b) $T(t+s) = T(t)T(s)$ for all $t, s \in \mathbb{R}$; (c) $T(t)x \rightarrow x$ (as $t \rightarrow 0$) for all $x \in X$.

(ii) The generator A of a C_0-group $\{T(t); t \in \mathbb{R}\}$ is defined as

$$y = Ax \ (x \in D(A)) \iff T(t)x - x = \int_0^t T(s)yds.$$

An operator A is the generator of a C_0-group $\{T(t); t \in \mathbb{R}\}$ satisfying $\|T(t)\| \leq Me^{\gamma|t|}$ for all $t \in \mathbb{R}$ if and only if A is closed, $D(A) = X$ and $\|\lambda \pm A\|^{-1} \leq M(\lambda - \gamma)^{-n}$ for all $\lambda > \gamma \geq 0$ and $n \in \mathbb{N}$.

The next theorem is concerned with perturbations of the generator of a C_0-group, however, it involves only first-order resolvent condition.

Theorem 2. Let A be the generator of a C_0-group on X and B a closed operator on X such that $D(A) \subset D(B)$. Assume that there exist constants $0 < M < 1$ and $\gamma_0 > 0$ such that

(1) $\|B(\gamma + i\omega - A)^{-1}\| \leq M$,
(2) $\|B(\gamma + i\omega - A)^{-1}Bu\| \leq M\|u\|$ for all $\gamma > \gamma_0$ and $\omega \in \mathbb{R}$ (here $i = \sqrt{-1}$). Then $A + B$ generates a C_0-group on X.

Referring to [1] and [2], we can prove this theorem.

1st step. (1) and (2) imply by [1] that $A + B$ generates a C_0-semigroup $\{T(t); t \geq 0\}$ on X.

2nd step. (3) guarantees by [2] that $\{T(t)\}$ is embedded into a C_0-group on X.

The conclusion is thus trivial if we assume further that

(4) $\|B(\gamma + i\omega + A)^{-1}Bu\| \leq M\|u\|$ for all $B \in D(B)$.

Therefore the meaning of Theorem 1 may be stated as follows: only condition (3) is sufficient to extend the semigroup to a group without having recourse to (4).

This theorem is applied to Schrödinger type operators as follows.

Example. Let $X := L^2(\mathbb{R})$, $k \in \mathbb{N}$ and consider differential operators of the form:

$$(Au)(x) := i\frac{d^{2k}u}{dx^{2k}}(x), \quad D(A) := H^{2k}(\mathbb{R}),$$

$$(Bv)(x) := V(x)\frac{d^l v}{dx^l}(x), \quad D(B) := H^l(\mathbb{R}),$$

where $V \in H^{l+1}(\mathbb{R})$ and $l = 0, 1, 2, \ldots, k - 1$. Then $A + B$ generates a C_0-group on $L^2(\mathbb{R})$.

References
