Perturbation theorem for C_0 -groups on Hilbert space

Daisuke Fujinawa

Tokyo University of Science

We consider perturbations of C_0 -group generators. Let X be a complex Hilbert space. First, we define a C_0 -group on X and its generator.

Definition 1. (i) A one-parameter family $\{T(t); t \in \mathbb{R}\}$ is a C_0 -group of bounded linear operators if (a) T(0) = I; (b) $T(t+s) = T(t)T(s) \quad \forall t, s \in \mathbb{R}$; (c) $T(t)x \to x \ (t \to 0) \quad \forall x \in X$. (ii) The generator A of a C_0 -group $\{T(t); t \in \mathbb{R}\}$ is defined as

$$y = Ax \ (x \in D(A)) \iff T(t)x - x = \int_0^t T(s)yds$$

An operator A is the generator of a C_0 -group $\{T(t); t \in \mathbb{R}\}$ satisfying $||T(t)|| \leq M e^{\gamma|t|} \,\forall t \in \mathbb{R}$ if and only if A is closed, $\overline{D(A)} = X$ and $||(\lambda \pm A)^{-n}|| \leq M(\lambda - \gamma)^{-n} \,\forall \operatorname{Re} \lambda > \gamma \geq 0$ and $n \in \mathbb{N}$.

The next theorem is concerned with perturbations of the generator of a C_0 -group, however, it involves only first-order resolvent condition.

Theorem 2. Let A be the generator of a C_0 -group on X and B a closed operator on X such that $D(A) \subset D(B)$. Assume that there exist constants 0 < M < 1 and $\gamma_0 > 0$ such that

(1)
$$||B(\gamma + i\omega - A)^{-1}|| \le M,$$

(2)
$$\|(\gamma + i\,\omega - A)^{-1}Bu\| \le M \|u\| \quad \forall \, u \in D(B),$$

(3)
$$||B(\gamma + i\omega + A)^{-1}|| \le M$$

for all $\gamma > \gamma_0$ and $\omega \in \mathbb{R}$ (here $i = \sqrt{-1}$). Then A + B generates a C_0 -group on X.

Referring to [1] and [2], we can prove this theorem. **1st step.**(1) and (2) imply by [1] that A + B generates a C_0 -semigroup $\{T(t); t \ge 0\}$ on X. **2nd step.**(3) guarantees by [2] that $\{T(t)\}$ is embedded into a C_0 -group on X.

The conclusion is thus trivial if we assume further that

(4)
$$\|(\gamma + i\omega + A)^{-1}Bu\| \le M \|u\| \quad \forall \ u \in D(B).$$

Therefore the meaning of Theorem 1 may be stated as follows: only condition (3) is sufficient to extend the semigroup to a group without having recourse to (4).

This theorem is applied to Schrödinger type operators as follows. Example. Let $X := L^2(\mathbb{R}), k \in \mathbb{N}$ and consider differential operators of the form:

$$\begin{split} (Au)(x) &:= i \, \frac{d^{2k} u}{dx^{2k}}(x), \quad D(A) := H^{2k}(\mathbb{R}), \\ (Bv)(x) &:= V(x) \frac{d^l v}{dx^l}(x), \quad D(B) := H^l(\mathbb{R}), \end{split}$$

where $V \in H^{l+1}(\mathbb{R})$ and $l = 0, 1, 2, \ldots, k-1$. Then A + B generates a C_0 -group on $L^2(\mathbb{R})$.

References

- [1] C.J.K. Batty, On a perturbation theorem of Kaiser and Weis, Semigroup Forum 70 (2005), 471–474.
- [2] K. Liu, A characterization of strongly continuous groups of linear orepators on a Hilbert space, Bulletin of London Math. Soc. 32 (2000), 54–62.