L^p -theory of second-order elliptic operators with unbounded coefficients

Hiroshi Tamura

(Tokyo University of Science)

Let $p \in (1, \infty)$ and $N \in \mathbf{N}$. In the complex Banach space L^p (:= $L^p(\mathbf{R}^N)$), we consider the elliptic partial differential operator of the form

 $Tu := -\Delta u + b \cdot \nabla u + qu.$

Here $b := (b_1, b_2, \dots, b_N)$ is a real-vector-valued function on \mathbf{R}^N and q is a complex-valued function on \mathbf{R}^N . We assume that

(A1)
$$(1+|x|)^{-1}b_j \in L^{2p} \cap L^{\infty}, \ \frac{\partial b_j}{\partial x_k} \in L^{\infty} \ (j,k=1,2,\ldots,N),$$

(A2)
$$(1+|x|)^{-1}q \in L^{\infty}, \text{ Re } q \ge 0, \ \frac{\partial q}{\partial x_k} \in L^{\infty} \ (k=1,2,\ldots,N).$$

Let T_{\min} be the restriction of the formal differential expression T on $C_0^{\infty}(\mathbf{R}^N)$.

Under these conditions we obtain the following

Theorem. T_{\min} is closable and its closure \widetilde{T}_{\min} is quasi-m-accretive in L^p . More precisely, for some $\lambda \in \mathbf{R}$,

$$\operatorname{Re}((T_{\min} + \lambda)u, |u|^{p-2}u) \ge 0, \quad u \in C_0^{\infty}(\mathbf{R}^N),$$
$$R(\widetilde{T}_{\min} + \lambda) = L^p.$$

Kato [1] presented this problem in L^2 , and Noguchi [2] replaced Δu with div $(a\nabla u)$. Conditions (A1) and (A2) are stronger than those in [1]. To prove this theorem we introduce the intermediate operator T_{int} whose definition is different from that in [1].

Definition. Define T_{int} as

$$\begin{cases} D(T_{\text{int}}) := \{ u \in W^{1,1}(\mathbf{R}^N) \cap W^{1,\infty}(\mathbf{R}^N) \cap W^{2,p}_{\text{loc}}(\mathbf{R}^N); \\ (1+|x|)^{-1}B_j u \in L^p \ (j=1,2,\ldots,N), \ Tu \in L^p \}, \\ T_{\text{int}}u := Tu, \ u \in D(T_{\text{int}}). \end{cases}$$

Here B_i is formally defined as

$$B_j u := -2 \frac{\partial u}{\partial x_j} + b_j u, \quad (j = 1, 2, \dots, N).$$

Then we present the key propositions in terms of this operator.

Proposition 1. $T_{\min} \subset T_{\inf} \subset \overline{T}_{\min}$.

Proposition 2. $C_0^{\infty}(\mathbf{R}^N) \subset R(T_{\text{int}} + \lambda)$ for some $\lambda \in \mathbf{R}$.

To prove these propositions we need cut-off functions presented by Kato [1]. By virtue of the functions we can give the growth rate of (1 + |x|)-order to b and q.

References

- T. Kato, Nonselfadjoint Schrödinger operators with singular first-order coefficients, Proc. Roy. Soc. Edinburgh, Sect. A 96 (1984), 323-329.
- [2] 野口大介, L²-theory of second-order elliptic operators with singular first-order coefficients, 修士論文, 2007.