On Blow-up at Space Infinity for Nonlinear Heat Equations

Noriaki Umeda

Graduate School of Mathematical Sciences, University of Tokyo
3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan

We are interested in solutions of nonlinear heat equations which blow up at space infinity. We consider solutions of the initial value problem for the equation

$$
\begin{cases}u_{t}=\Delta u+f(u), & x \in \mathbf{R}^{n}, t>0, \tag{1}\\ u(x, 0)=u_{0}(x), & x \in \mathbf{R}^{n} .\end{cases}
$$

The nonlinear term f is assumed to be locally Lipschitz in $[0, \infty)$ and a nonnegative function satisfying

$$
\begin{equation*}
f(\delta b) \leq \delta^{p} f(b) \tag{2}
\end{equation*}
$$

for all $b \geq b_{0}$ and for all $\delta \in\left(\delta_{0}, 1\right)$ with some $b_{0}>0$, some $\delta_{0} \in(0,1)$ and some $p>1$. The initial data u_{0} is assumed to be a measureable function in \mathbf{R}^{n} satisfying

$$
\begin{equation*}
0 \leq u_{0} \leq M \text { a.e. } \quad \text { and } \quad u_{0} \not \equiv M \text { a.e. } \tag{3}
\end{equation*}
$$

with some positive M. We are interested in initial data such that $u_{0} \rightarrow M$ as $|x| \rightarrow \infty$ for x in some sector of \mathbf{R}^{n}. We assume that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u_{0}\left(x+x_{m}\right)=M \quad \text { a.e. in } \mathbf{R}^{n} . \tag{4}
\end{equation*}
$$

with sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ is some sequence of vector. (In fact, it follows from (3) that $\left|x_{m}\right| \rightarrow \infty$ as $m \rightarrow \infty$.)

Problem (1) has a unique bounded solution at least locally in time. However, the solution may blow up in finite time. For a given initial value u_{0} and nonlinear term f let $T^{*}=T^{*}\left(u_{0}, f\right)$ be the maximal existence time of
the solution. If $T^{*}=\infty$, the solution exists globally in time. If $T^{*}<\infty$, we say that the solution blows up in finite time. It is well known that

$$
\begin{equation*}
\limsup _{t \rightarrow T^{*}}\|u(\cdot, t)\|_{\infty}=\infty \tag{5}
\end{equation*}
$$

In this paper, we are interested in behavior of a blowing up solution near space infinity as well as location of blow-up points defined below. A point $x_{B U} \in \mathbf{R}^{n}$ is called a blow-up point (with value $\pm \infty$) if there exists a sequence $\left\{\left(x_{m}, t_{m}\right)\right\}_{m=1}^{\infty}$ such that

$$
t_{m} \uparrow T^{*}, \quad x_{m} \rightarrow x_{B U} \quad \text { and } \quad u\left(x_{m}, t_{m}\right) \rightarrow \pm \infty \quad \text { as } \quad m \rightarrow \infty
$$

If there exists a sequence $\left\{\left(x_{m}, t_{m}\right)\right\}_{m=1}^{\infty}$ such that

$$
t_{m} \uparrow T^{*}, \quad\left|x_{m}\right| \rightarrow \infty \quad \text { and } \quad u\left(x_{m}, t_{m}\right) \rightarrow \pm \infty \quad \text { as } \quad m \rightarrow \infty
$$

then we we say that the solution blows up to $\pm \infty$ at space infinity.
A direction $\psi \in S^{n-1}$ is called a blow-up direction for the value $\pm \infty$ if there exists a sequence $\left\{\left(x_{m}, t_{m}\right)\right\}_{m=1}^{\infty}$ with $x_{m} \in \mathbf{R}^{n}$ and $t_{m} \in\left(0, T^{*}\right)$ such that $u\left(x_{m}, t_{m}\right) \rightarrow \pm \infty($ as $m \rightarrow \infty)$ and

$$
\begin{equation*}
\frac{x_{m}}{\left|x_{m}\right|} \rightarrow \psi \quad \text { as } \quad m \rightarrow \infty \tag{6}
\end{equation*}
$$

We consider the solution $v(t)$ of an ordinary differential equation

$$
\left\{\begin{array}{l}
v_{t}=f(v), \quad t>0, \tag{7}\\
v(0)=M
\end{array}\right.
$$

Let $T_{v}=T^{*}(M, f)$ be the maximal existence time of solutions of (7), i. e.,

$$
T_{v}=\int_{M}^{\infty} \frac{d s}{f(s)} .
$$

We are now in position to state our main results.
Theorem 1. Assume that f is locally Lipschitz in \boldsymbol{R} and satisfies (2). Let u_{0} be a continuous function satisfying (3) and (4). Then there exists a subsequence of $\left\{x_{m}\right\}_{m=1}^{\infty}$ (still denote by $\left\{x_{m}\right\}$, independent of t) such that

$$
\lim _{m \rightarrow \infty} u\left(x+x_{m}, t\right)=v(t) \quad \text { a.e. in } \mathbf{R}^{n} .
$$

The convergence is uniform in every compact subset of $\left\{t: 0 \leq t<T_{v}\right\}$. Moreover, the solution blows up at T_{v}.

Theorem 2. Assume the same hypotheses of Theorem 1. Then the solution of (1) has no blow-up points in \boldsymbol{R}^{n}. (It blows up only at space infinity.)

Theorem 3. Assume the same hypotheses of Theorem 1. Let a direction $\psi \in S^{n-1}$. If and only if there exists a sequence $\left\{y_{m}\right\}_{m=1}^{\infty}$ satisfying $\lim _{m \rightarrow \infty} y_{m} /\left|y_{m}\right|=\psi$ such that

$$
u_{0}\left(x+y_{m}\right) \rightarrow M \text { as } m \rightarrow \infty \text { a.e. in } \mathbf{R}^{n}
$$

then ψ is a blow-up direction.

References

[1] Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl. 316 (2006), no. 2, 538-555.
[2] Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations, Bol. Soc. Parana. Mat. (3) 23 (2005), no. 1-2, 9-28.
[3] Y. Giga and N. Umeda, Correction to "Blow-up directions at space infinity for solutions of semilinear heat equations" 23 (2005), 9-28, to appear in Bol. Soc. Parana. Mat.
[4] Y. Giga, Y. Seki and N. Umeda, Blow-up at space infinity for nonlinear heat equation, EPrint series of Department of Mathematics, Hokkaido University $\sharp 856$ (2007).
[5] A. A. Lacey, The form of blow-up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), no. 1-2, 183-202.
[6] Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations, to appear in Proc. Roy. Soc. Edinburgh Sect. A.

