On Blow-up at Space Infinity for Nonlinear Heat Equations

Noriaki Umeda

Graduate School of Mathematical Sciences, University of Tokyo 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan

We are interested in solutions of nonlinear heat equations which blow up at space infinity. We consider solutions of the initial value problem for the equation

$$\begin{cases} u_t = \Delta u + f(u), & x \in \mathbf{R}^n, t > 0, \\ u(x, 0) = u_0(x), & x \in \mathbf{R}^n. \end{cases}$$
 (1)

The nonlinear term f is assumed to be locally Lipschitz in $[0, \infty)$ and a nonnegative function satisfying

$$f(\delta b) \le \delta^p f(b). \tag{2}$$

for all $b \ge b_0$ and for all $\delta \in (\delta_0, 1)$ with some $b_0 > 0$, some $\delta_0 \in (0, 1)$ and some p > 1. The initial data u_0 is assumed to be a measureable function in \mathbf{R}^n satisfying

$$0 \le u_0 \le M \text{ a.e.}$$
 and $u_0 \not\equiv M \text{ a.e.}$ (3)

with some positive M. We are interested in initial data such that $u_0 \to M$ as $|x| \to \infty$ for x in some sector of \mathbb{R}^n . We assume that

$$\lim_{m \to \infty} u_0(x + x_m) = M \quad \text{a.e. in } \mathbf{R}^n.$$
 (4)

with sequence $\{x_m\}_{m=1}^{\infty}$ is some sequence of vector. (In fact, it follows from (3) that $|x_m| \to \infty$ as $m \to \infty$.)

Problem (1) has a unique bounded solution at least locally in time. However, the solution may blow up in finite time. For a given initial value u_0 and nonlinear term f let $T^* = T^*(u_0, f)$ be the maximal existence time of the solution. If $T^* = \infty$, the solution exists globally in time. If $T^* < \infty$, we say that the solution blows up in finite time. It is well known that

$$\lim_{t \to T^*} \|u(\cdot, t)\|_{\infty} = \infty.$$
 (5)

In this paper, we are interested in behavior of a blowing up solution near space infinity as well as location of blow-up points defined below. A point $x_{BU} \in \mathbf{R}^n$ is called a blow-up point (with value $\pm \infty$) if there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ such that

$$t_m \uparrow T^*, \quad x_m \to x_{BU} \quad \text{and} \quad u(x_m, t_m) \to \pm \infty \quad \text{as} \quad m \to \infty.$$

If there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ such that

$$t_m \uparrow T^*, \quad |x_m| \to \infty \quad \text{and} \quad u(x_m, t_m) \to \pm \infty \quad \text{as} \quad m \to \infty,$$

then we we say that the solution blows up to $\pm \infty$ at space infinity.

A direction $\psi \in S^{n-1}$ is called a blow-up direction for the value $\pm \infty$ if there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ with $x_m \in \mathbf{R}^n$ and $t_m \in (0, T^*)$ such that $u(x_m, t_m) \to \pm \infty$ (as $m \to \infty$) and

$$\frac{x_m}{|x_m|} \to \psi \quad \text{as} \quad m \to \infty.$$
 (6)

We consider the solution v(t) of an ordinary differential equation

$$\begin{cases} v_t = f(v), & t > 0, \\ v(0) = M. \end{cases}$$
 (7)

Let $T_v = T^*(M, f)$ be the maximal existence time of solutions of (7), i. e.,

$$T_v = \int_M^\infty \frac{ds}{f(s)}.$$

We are now in position to state our main results.

Theorem 1. Assume that f is locally Lipschitz in \mathbf{R} and satisfies (2). Let u_0 be a continuous function satisfying (3) and (4). Then there exists a subsequence of $\{x_m\}_{m=1}^{\infty}$ (still denote by $\{x_m\}$, independent of t) such that

$$\lim_{m \to \infty} u(x + x_m, t) = v(t) \quad \text{a.e. in } \mathbf{R}^n.$$

The convergence is uniform in every compact subset of $\{t: 0 \leq t < T_v\}$. Moreover, the solution blows up at T_v .

Theorem 2. Assume the same hypotheses of Theorem 1. Then the solution of (1) has no blow-up points in \mathbb{R}^n . (It blows up only at space infinity.)

Theorem 3. Assume the same hypotheses of Theorem 1. Let a direction $\psi \in S^{n-1}$. If and only if there exists a sequence $\{y_m\}_{m=1}^{\infty}$ satisfying $\lim_{m\to\infty} y_m/|y_m| = \psi$ such that

$$u_0(x+y_m) \to M \text{ as } m \to \infty \text{ a.e. in } \mathbf{R}^n,$$

then ψ is a blow-up direction.

References

- [1] Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl. **316** (2006), no. 2, 538–555.
- [2] Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations, Bol. Soc. Parana. Mat. (3) **23** (2005), no. 1-2, 9-28.
- [3] Y. Giga and N. Umeda, Correction to "Blow-up directions at space infinity for solutions of semilinear heat equations" 23 (2005), 9–28, to appear in Bol. Soc. Parana. Mat.
- [4] Y. Giga, Y. Seki and N. Umeda, *Blow-up at space infinity for nonlinear heat equation*, EPrint series of Department of Mathematics, Hokkaido University \$856 (2007).
- [5] A. A. Lacey, The form of blow-up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), no. 1-2, 183–202.
- [6] Y. Seki, R. Suzuki and N. Umeda, *Blow-up directions for quasilinear parabolic equations*, to appear in Proc. Roy. Soc. Edinburgh Sect. A.