Doubly nonlinear evolution equations and dynamical systems

赤木 剛朗（芝浦工業大学システム工学部）
g－akagi＠sic．shibaura－it．ac．jp

1 Introduction

Let V and V^{*} be a reflexive Banach space and its dual space，respectively，and let H be a Hilbert space whose dual space H^{*} is identified with itself such that

$$
\begin{equation*}
V \hookrightarrow H \equiv H^{*} \hookrightarrow V^{*} \tag{1}
\end{equation*}
$$

with continuous and densely defined canonical injections．Let φ and ψ be proper lower semi－ continuous functions from V into $(-\infty, \infty]$ ，and let $\partial_{V} \varphi, \partial_{V} \psi: V \rightarrow 2^{V^{*}}$ be subdifferential operators of φ and ψ respectively．Moreover，let B be a（possibly）non－monotone and multi－ valued operator from V into V^{*} ．

This talk deals with the dynamical system generated by the Cauchy problem（ CP ）for the following doubly nonlinear evolution equation：

$$
\begin{equation*}
\partial_{V} \psi\left(u^{\prime}(t)\right)+\partial_{V} \varphi(u(t))+B(u(t)) \ni f \text { in } V^{*}, \quad 0<t<\infty \tag{2}
\end{equation*}
$$

where $f \in V^{*}$ and $u_{0} \in D(\varphi):=\{u \in V ; \varphi(u)<\infty\}$ are given data．We first prove the existence of global（in time）strong solutions of（CP）by imposing appropriate conditions such as the coerciveness and the boundedness of $\partial_{V} \psi$ ，the precompactness of sub－level sets of φ ， and the boundedness and the compactness of B ．The main purpose of this talk is to discuss the large－time behavior of global solutions for（ CP ），in particular，the existence of global attractors；however，since the scope of our abstract framework involves the case where（CP） admits multiple solutions，the usual semi－group approach to dynamical systems could be no longer valid．Therefore we employ the notion of generalized semiflow proposed by J．M．Ball［3］ to treat global attractors for（CP）．

Furthermore，we apply the preceding abstract theory to generalized Allen－Cahn equations． Gurtin［4］proposed a generalized Allen－Cahn equation，which describes the evolution of an order parameter $u=u(x, t)$ ，of the form

$$
\begin{equation*}
\rho\left(u, \nabla u, u_{t}\right) u_{t}=\operatorname{div}\left[\partial_{\mathbf{p}} \hat{\psi}(u, \nabla u)\right]-\partial_{r} \hat{\psi}(u, \nabla u)+f \tag{3}
\end{equation*}
$$

where $\rho=\rho(r, \mathbf{p}, s) \geq 0$ is a constitutive modulus，$\hat{\psi}=\hat{\psi}(r, \mathbf{p})$ denotes a free energy density and f is an external microforce．As a simple instance of the free energy density $\hat{\psi}$ ，we often take

$$
\hat{\psi}(r, \mathbf{p})=\frac{1}{2}|\mathbf{p}|^{2}+W(r)
$$

with a double－well potential $W(r)=\left(r^{2}-1\right)^{2}$ ．In this talk we treat a generalized Allen－Cahn equation of degenerate type as well as a perturbation problem of a semilinear generalized Allen－Cahn equation．

2 Generalized semiflow

The notion of generalized semiflow was first introduced by J．M．Ball［3］．He also defined global attractors for generalized semiflows and provided a criterion of the existence of global attractors．We first recall the definition of generalized semiflow．

Definition 2.1. Let X be a metric space with metric $d_{X}=d_{X}(\cdot, \cdot)$. A family \mathcal{G} of maps $\varphi:[0, \infty) \rightarrow X$ is said to be a generalized semiflow in X, if the following four conditions are all satisfied:
(H1) (Existence) for each $x \in X$ there exists $\varphi \in \mathcal{G}$ such that $\varphi(0)=x$;
(H2) (Translation invariance) if $\varphi \in \mathcal{G}$ and $\tau \geq 0$, then the map φ^{τ} also belongs to \mathcal{G}, where $\varphi^{\tau}(t):=\varphi(t+\tau)$ for $t \in[0, \infty) ;$
(H3) (Concatenation invariance) if $\varphi_{1}, \varphi_{2} \in \mathcal{G}$ and $\varphi_{2}(0)=\varphi_{1}(\tau)$ at some $\tau \geq 0$, then the map ψ, the concatenation of φ_{1} and φ_{2} at τ, defined by

$$
\psi(t):= \begin{cases}\varphi_{1}(t) & \text { if } t \in[0, \tau] \\ \varphi_{2}(t-\tau) & \text { if } t \in(\tau, \infty)\end{cases}
$$

also belongs to \mathcal{G};
(H4) (Upper semicontinuity) if $\varphi_{n} \in \mathcal{G}, x \in X$ and $\varphi_{n}(0) \rightarrow x$ in X, then there exist a subsequence $\left(n^{\prime}\right)$ of (n) and $\varphi \in \mathcal{G}$ such that $\varphi_{n^{\prime}}(t) \rightarrow \varphi(t)$ for each $t \in[0, \infty)$.
Let \mathcal{G} be a generalized semiflow in a metric space X. We define a map $T(t): 2^{X} \rightarrow 2^{X}$ by

$$
\begin{equation*}
T(t) E:=\{\varphi(t) ; \varphi \in \mathcal{G} \text { and } \varphi(0) \in E\} \quad \text { for } E \subset X \tag{4}
\end{equation*}
$$

for each $t \geq 0$. Moreover, global attractors for generalized semiflows are defined as follows.
Definition 2.2. Let \mathcal{G} be a generalized semiflow in a metric space X and let $(T(t))_{t \geq 0}$ be the family of mappings defined as in (4). A set $\mathcal{A} \subset X$ is said to be a global attractor for the generalized semiflow \mathcal{G} if the following (i)-(iii) hold.
(i) \mathcal{A} is compact in X;
(ii) \mathcal{A} is invariant under $T(t)$, i.e., $T(t) \mathcal{A}=\mathcal{A}$, for all $t \geq 0$;
(iii) \mathcal{A} attracts any bounded subsets B of X by $(T(t))_{t \geq 0}$, i.e.,

$$
\lim _{t \rightarrow \infty} \operatorname{dist}(T(t) B, \mathcal{A})=0
$$

where $\operatorname{dist}(\cdot, \cdot)$ is defined by

$$
\operatorname{dist}(A, B):=\sup _{a \in A} \inf _{b \in B} d_{X}(a, b) \quad \text { for } \quad A, B \subset X
$$

3 Main results

Let us first state our basic assumptions: let $p \in(1, \infty), T>0$ and $\varepsilon>0$ be fixed.
(A1) There exist positive constants $C_{i}(i=1,2,3,4)$ such that

$$
\begin{aligned}
& C_{1}|u|_{V}^{p} \leq \psi(u)+C_{2} \quad \text { for all } u \in D(\psi) \\
& |\eta|_{V^{*}}^{p^{\prime}} \leq C_{3} \psi(u)+C_{4} \quad \text { for all }[u, \eta] \in \partial_{V} \psi
\end{aligned}
$$

(A2) There exist a reflexive Banach space X_{0} and a non-decreasing function ℓ_{1} on $[0, \infty)$ such that X_{0} is compactly embedded in V and

$$
|u|_{X_{0}} \leq \ell_{1}\left(|u|_{H}+[\varphi(u)]_{+}\right) \quad \text { for all } u \in D\left(\partial_{V} \varphi\right)
$$

where $[s]_{+}:=\max \{s, 0\} \geq 0$ for $s \in \mathbb{R}$.
$(\mathbf{A 3})_{\varepsilon} D\left(\partial_{V} \varphi\right) \subset D(B)$. There exists a constant $c_{\varepsilon} \geq 0$ such that

$$
|g|_{V^{*}}^{p^{\prime}} \leq \varepsilon|\xi|_{V^{*}}^{\sigma}+c_{\varepsilon}\left\{|\varphi(u)|+|u|_{V}^{p}+1\right\} \quad \text { with } \sigma:=\min \left\{2, p^{\prime}\right\}
$$

for all $u \in D\left(\partial_{V} \varphi\right), g \in B(u)$ and $\xi \in \partial_{V} \varphi(u)$.
(A4) Let $S \in(0, T]$ and let $\left(u_{n}\right)$ and $\left(\xi_{n}\right)$ be sequences in $C([0, S] ; V)$ and $L^{\sigma}\left(0, S ; V^{*}\right)$ with $\sigma:=\min \left\{2, p^{\prime}\right\}$, respectively, such that $u_{n} \rightarrow u$ strongly in $C([0, S] ; V),\left[u_{n}(t), \xi_{n}(t)\right] \in$ $\partial_{V} \varphi$ for a.e. $t \in(0, S)$, and

$$
\sup _{t \in[0, S]}\left|\varphi\left(u_{n}(t)\right)\right|+\int_{0}^{S}\left|u_{n}^{\prime}(t)\right|_{H}^{p} d t+\int_{0}^{S}\left|\xi_{n}(t)\right|_{V^{*}}^{\sigma} d t
$$

is bounded for all $n \in \mathbb{N}$,
and let $\left(g_{n}\right)$ be a sequence in $L^{p^{\prime}}\left(0, S ; V^{*}\right)$ such that $g_{n}(t) \in B\left(u_{n}(t)\right)$ for a.e. $t \in(0, S)$ and $g_{n} \rightarrow g$ weakly in $L^{p^{\prime}}\left(0, S ; V^{*}\right)$. Then $\left(g_{n}\right)$ is precompact in $L^{p^{\prime}}\left(0, S ; V^{*}\right)$ and $g(t) \in B(u(t))$ for a.e. $t \in(0, S)$.
(A5) Let $S \in(0, T]$ and $u \in C([0, S] ; V) \cap W^{1, p}(0, S ; H)$ be such that $\sup _{t \in[0, S]}|\varphi(u(t))|<\infty$ and suppose that there exists $\xi \in L^{p^{\prime}}\left(0, S ; V^{*}\right)$ such that $\xi(t) \in \partial_{V} \varphi(u(t))$ for a.e. $t \in(0, S)$. Then there exists a V^{*}-valued strongly measurable function g such that $g(t) \in B(u(t))$ for a.e. $t \in(0, S)$. Moreover, the set $B(u)$ is convex for all $u \in D(B)$.

Here we are concerned with the strong solutions of (CP) given as follows:
Definition 3.1. For $T \in(0, \infty)$, a function $u \in A C([0, T] ; V)$ is said to be a strong solution of (CP) on $[0, T]$, if the following conditions are satisfied:
(i) $u(0)=u_{0}$,
(ii) there exists a negligible set $N \subset(0, T)$, i.e., the Lebesgue measure of N is zero, such that $u(t) \in D\left(\partial_{V} \varphi\right)$ and $u^{\prime}(t) \in D\left(\partial_{V} \psi\right)$ for all $t \in[0, T] \backslash N$, and moreover, there exist sections $\eta(t) \in \partial_{V} \psi\left(u^{\prime}(t)\right), \xi(t) \in \partial_{V} \varphi(u(t))$ and $g(t) \in B(u(t))$ such that

$$
\begin{equation*}
\eta(t)+\xi(t)+\lambda g(t)=f \quad \text { in } V^{*} \text { for all } t \in[0, T] \backslash N, \tag{5}
\end{equation*}
$$

(iii) $u(t) \in D(\varphi)$ for all $t \in[0, T]$, and the function $\varphi(u(\cdot))$ is absolutely continuous on $[0, T]$.

Furthermore, for $T \in(0, \infty]$, a function $u \in A C([0, T) ; V)$ is said to be a strong solution of (CP) on $[0, T)$, if u is a strong solution of (CP) on $[0, S]$ for every $S \in(0, T)$.

The following theorem is concerned with the existence of global (in time) strong solutions.
Theorem 3.2 (Global existence). Let $p \in(1, \infty)$ and $T>0$ be fixed. Suppose that (A1)-(A5) are all satisfied with a sufficiently small $\varepsilon>0$. Then, for all $f \in V^{*}$ and $u_{0} \in D(\varphi)$, there exists at least one strong solution $u \in W^{1, p}(0, T ; V)$ on $[0, T]$.

We set $X:=D(\varphi)$ with the distance $d_{X}(u, v):=|u-v|_{V}+|\varphi(u)-\varphi(v)|$ for $u, v \in X$, and moreover, we define

$$
\mathcal{G}:=\{u \in C([0, \infty) ; V) ; u \text { is a strong solution of }(2) \text { on }[0, \infty)\} .
$$

Theorem 3.3. Let $p \in(1, \infty)$ be given. Suppose that (A1)-(A5) are all satisfied with a sufficient small constant $\varepsilon>0$ for any $T>0$. Then, for all $f \in V^{*}$, the set \mathcal{G} is a generalized semiflow on X.

Now, our main result reads,
Theorem 3.4. Suppose that
(A6) There exist constants $\alpha>0$ and $C_{5} \geq 0$ such that

$$
\alpha\left\{\varphi(u)+|u|_{V}^{p}\right\} \leq\langle\xi+g, u\rangle+C_{5}
$$

for all $u \in D\left(\partial_{V} \varphi\right), \xi \in \partial_{V} \varphi(u)$ and $g \in B(u)$.
In addition, assume $f \in V^{*}$ and (A1)-(A5) with an enough small constant $\varepsilon>0$ for any $T>0$. Then the generalized semiflow \mathcal{G} has a global attractor \mathcal{A}, and \mathcal{A} is a unique maximal compact invariant subset of X.

4 Applications to generalized Allen-Cahn equations

Let Ω be a bounded domain in \mathbb{R}^{N} with C^{2} boundary $\partial \Omega$. For given functions $u_{0}, f: \Omega \rightarrow \mathbb{R}$, we first deal with

$$
\left.\begin{array}{ll}
\alpha\left(u_{t}(x, t)\right)-\Delta_{m} u(x, t)+\partial_{r} W(x, u(x, t)) \ni f(x), & (x, t) \in \Omega \times(0, \infty), \tag{6}\\
u(x, t)=0, & (x, t) \in \partial \Omega \times(0, \infty), \\
u(x, t)=u_{0}(x), & x \in \Omega,
\end{array}\right\}
$$

where α is a maximal monotone graph in \mathbb{R}^{2} satisfying a p-power growth condition (e.g., $\alpha(r)=|r|^{p-2} r$) with $p \geq 2$ and Δ_{m} stands for the so-called m-Laplace operator given by

$$
\Delta_{m} u(x)=\nabla \cdot\left(|\nabla u(x)|^{m-2} \nabla u(x)\right), \quad 1<m<\infty .
$$

Moreover, $\partial_{r} W$ stands for the derivative in r of a potential $W=W(x, r): \Omega \times \mathbb{R} \rightarrow(-\infty,+\infty]$ given by

$$
\begin{equation*}
W(x, r):=j(r)+\int_{0}^{r} g(x, \rho) d \rho \quad \text { for } \quad x \in \Omega, r \in \mathbb{R} \tag{7}
\end{equation*}
$$

with a lower semicontinuous convex function $j: \mathbb{R} \rightarrow(-\infty,+\infty]$ and a (possibly nonmonotone) function $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ integrable in \mathbb{R}. Hence $\partial_{r} W(x, r)=\partial j(r)+g(x, r)$. Then (6) is regarded as a special case of (3); more precisely, $\rho=\rho(s)$ and $\alpha(s):=\rho(s) s$ is maximal monotone and satisfies a p-power growth condition, and furthermore,

$$
\hat{\psi}(r, \mathbf{p})=\frac{1}{m}|\mathbf{p}|^{m}+W(r) .
$$

Let us introduce the following assumptions.
(a1) $g=g(x, r)$ is a Carathéodory function, i.e., measurable in x and continuous in r. Moreover, there exist constants $q \geq 2, C_{6} \geq 0$ and a function $a_{1} \in L^{1}(\Omega)$ such that

$$
|g(x, r)|^{p^{\prime}} \leq C_{6}|r|^{p^{\prime}(q-1)}+a_{1}(x)
$$

for a.e. $x \in \Omega$ and all $r \in \mathbb{R}$.
(a2) there exist constants $\sigma>1$ and $C_{7} \geq 0$ such that

$$
|r|^{\sigma} \leq C_{7}(j(r)+1) \quad \text { for all } r \in \mathbb{R} .
$$

Then our result reads,

Theorem 4.1. In addition to (a1) and (a2), assume that

$$
2 \leq p<\max \left\{m^{*}, \sigma\right\} \quad \text { and } p^{\prime}(q-1)<\max \{m, p, \sigma\}
$$

where m^{*} is the Sobolev critical exponent, i.e., $m^{*}:=N m /(N-m)_{+}$. Then, for $f \in L^{p^{\prime}}(\Omega)$ and $u_{0} \in X:=\left\{v \in W_{0}^{1, m}(\Omega) ; j(v(\cdot)) \in L^{1}(\Omega)\right\}$, the initial-boundary value problem (6) admits at least one L^{p}-solution on $[0, \infty)$. Moreover, the set of solutions for (6) forms a generalized semiflow \mathcal{G} on X. Furthermore, if $p \leq \max \{m, \sigma\}$, then \mathcal{G} possesses a global attractor on X.

We next consider the following generalized problem.

$$
\left.\begin{array}{ll}
\alpha\left(u_{t}(x, t)\right)-\Delta u(x, t)+N(x, u(x, t), \nabla u(x, t)) \ni f(x), & (x, t) \in \Omega \times(0, \infty) \tag{8}\\
u(x, t)=0, & (x, t) \in \partial \Omega \times(0, \infty) \\
u(x, t)=u_{0}(x), & x \in \Omega,
\end{array}\right\}
$$

where $N=N(x, r, \mathbf{p})$ is written as follows

$$
N(x, r, \mathbf{p})=\partial j(r)+h(x, r, \mathbf{p}) \quad \text { for } \quad x \in \Omega, r \in \mathbb{R}, \mathbf{p} \in \mathbb{R}^{N}
$$

It could be emphasized that this problem may not be written as a (generalized) gradient system such as (3), since the nonlinear term N depends on the gradient of u. We discuss the existence of global (in time) solutions and their long-time behavior for (6) and (8).

Now we introduce
$(\mathrm{a} 2)^{\prime} \partial j$ is single-valued, and (a2) holds.
(a3) $h=h(x, r, \mathbf{p})$ is a Carathéodory function, i.e., measurable in x and continuous in r and p. There exist constants $q_{1}, q_{2} \geq 2, C_{3} \geq 0$ and a function $a_{2} \in L^{1}(\Omega)$ such that

$$
|h(x, r, \mathbf{p})|^{p^{\prime}} \leq C_{3}\left(|r|^{p^{\prime}\left(q_{1}-1\right)}+|\mathbf{p}|^{p^{\prime}\left(q_{2}-1\right)}\right)+a_{2}(x)
$$

for a.e. $x \in \Omega$ and all $r \in \mathbb{R}$ and $\mathbf{p} \in \mathbb{R}^{N}$.
Then we can assure
Theorem 4.2. In addition to (a2)' and (a3), assume that

$$
2 \leq p<\max \left\{2^{*}, \sigma\right\}, \quad p^{\prime}\left(q_{1}-1\right)<\max \{p, \sigma\} \quad \text { and } \quad p^{\prime}\left(q_{2}-1\right)<2
$$

Then, for $f \in L^{p^{\prime}}(\Omega)$ and $u_{0} \in X:=\left\{v \in H_{0}^{1}(\Omega) ; j(v(\cdot)) \in L^{1}(\Omega)\right\}$, the initial-boundary value problem (8) admits at least one L^{p}-solution on $[0, \infty)$. Moreover, the set of solutions for
(8) forms a generalized semiflow \mathcal{G} on X. Furthermore, if $p=2$ or $p \leq \sigma$, then \mathcal{G} possesses a global attractor on X.

References

[1] Akagi G., Doubly nonlinear evolution equations with non-monotone perturbations in reflexive Banach spaces, submitted.
[2] Akagi G., Global attractors for generalized semiflows generated by doubly nonlinear evolution equations, submitted.
[3] Ball, J.M., J. Nonlinear Science, 7 (1997), 475-502.
[4] Gurtin, M.E., Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D 92 (1996), 178-192.
[5] Segatti, A., Global attractor for a class of doubly nonlinear abstract evolution equations, Discrete Contin. Dyn. Syst. 14 (2006), 801-820.

