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1 Introduction

Let V and V ∗ be a reflexive Banach space and its dual space, respectively, and let H be a
Hilbert space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗ (1)

with continuous and densely defined canonical injections. Let ϕ and ψ be proper lower semi-
continuous functions from V into (−∞,∞], and let ∂V ϕ, ∂V ψ : V → 2V ∗

be subdifferential
operators of ϕ and ψ respectively. Moreover, let B be a (possibly) non-monotone and multi-
valued operator from V into V ∗.

This talk deals with the dynamical system generated by the Cauchy problem (CP) for the
following doubly nonlinear evolution equation:

∂V ψ(u′(t)) + ∂V ϕ(u(t)) +B(u(t)) 3 f in V ∗, 0 < t <∞, (2)

where f ∈ V ∗ and u0 ∈ D(ϕ) := {u ∈ V ;ϕ(u) < ∞} are given data. We first prove the
existence of global (in time) strong solutions of (CP) by imposing appropriate conditions such
as the coerciveness and the boundedness of ∂V ψ, the precompactness of sub-level sets of ϕ,
and the boundedness and the compactness of B. The main purpose of this talk is to discuss
the large-time behavior of global solutions for (CP), in particular, the existence of global
attractors; however, since the scope of our abstract framework involves the case where (CP)
admits multiple solutions, the usual semi-group approach to dynamical systems could be no
longer valid. Therefore we employ the notion of generalized semiflow proposed by J.M. Ball [3]
to treat global attractors for (CP).

Furthermore, we apply the preceding abstract theory to generalized Allen-Cahn equations.
Gurtin [4] proposed a generalized Allen-Cahn equation, which describes the evolution of an
order parameter u = u(x, t), of the form

ρ(u,∇u, ut)ut = div
[
∂pψ̂(u,∇u)

]
− ∂rψ̂(u,∇u) + f, (3)

where ρ = ρ(r,p, s) ≥ 0 is a constitutive modulus, ψ̂ = ψ̂(r,p) denotes a free energy density
and f is an external microforce. As a simple instance of the free energy density ψ̂, we often
take

ψ̂(r,p) =
1
2
|p|2 +W (r)

with a double-well potential W (r) = (r2 − 1)2. In this talk we treat a generalized Allen-Cahn
equation of degenerate type as well as a perturbation problem of a semilinear generalized
Allen-Cahn equation.

2 Generalized semiflow

The notion of generalized semiflow was first introduced by J.M.Ball [3]. He also defined
global attractors for generalized semiflows and provided a criterion of the existence of global
attractors. We first recall the definition of generalized semiflow.



Definition 2.1. Let X be a metric space with metric dX = dX(·, ·). A family G of maps
ϕ : [0,∞) → X is said to be a generalized semiflow in X, if the following four conditions are
all satisfied :

(H1) (Existence) for each x ∈ X there exists ϕ ∈ G such that ϕ(0) = x;

(H2) (Translation invariance) if ϕ ∈ G and τ ≥ 0, then the map ϕτ also belongs to G, where
ϕτ (t) := ϕ(t+ τ) for t ∈ [0,∞);

(H3) (Concatenation invariance) if ϕ1, ϕ2 ∈ G and ϕ2(0) = ϕ1(τ) at some τ ≥ 0, then the
map ψ, the concatenation of ϕ1 and ϕ2 at τ , defined by

ψ(t) :=
{
ϕ1(t) if t ∈ [0, τ ],
ϕ2(t− τ) if t ∈ (τ,∞)

also belongs to G;

(H4) (Upper semicontinuity) if ϕn ∈ G, x ∈ X and ϕn(0) → x in X, then there exist a
subsequence (n′) of (n) and ϕ ∈ G such that ϕn′(t) → ϕ(t) for each t ∈ [0,∞).

Let G be a generalized semiflow in a metric space X. We define a map T (t) : 2X → 2X by

T (t)E := {ϕ(t); ϕ ∈ G and ϕ(0) ∈ E} for E ⊂ X (4)

for each t ≥ 0. Moreover, global attractors for generalized semiflows are defined as follows.

Definition 2.2. Let G be a generalized semiflow in a metric space X and let (T (t))t≥0 be the
family of mappings defined as in (4). A set A ⊂ X is said to be a global attractor for the
generalized semiflow G if the following (i)–(iii) hold.

(i) A is compact in X;

(ii) A is invariant under T (t), i.e., T (t)A = A, for all t ≥ 0;

(iii) A attracts any bounded subsets B of X by (T (t))t≥0, i.e.,

lim
t→∞

dist(T (t)B,A) = 0,

where dist(·, ·) is defined by

dist(A,B) := sup
a∈A

inf
b∈B

dX(a, b) for A,B ⊂ X.

3 Main results

Let us first state our basic assumptions: let p ∈ (1,∞), T > 0 and ε > 0 be fixed.

(A1) There exist positive constants Ci (i = 1, 2, 3, 4) such that

C1|u|pV ≤ ψ(u) + C2 for all u ∈ D(ψ),

|η|p
′

V ∗ ≤ C3ψ(u) + C4 for all [u, η] ∈ ∂V ψ.

(A2) There exist a reflexive Banach space X0 and a non-decreasing function `1 on [0,∞)
such that X0 is compactly embedded in V and

|u|X0 ≤ `1(|u|H + [ϕ(u)]+) for all u ∈ D(∂V ϕ),

where [s]+ := max{s, 0} ≥ 0 for s ∈ R.



(A3)ε D(∂V ϕ) ⊂ D(B). There exists a constant cε ≥ 0 such that

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + cε
{
|ϕ(u)| + |u|pV + 1

}
with σ := min{2, p′}

for all u ∈ D(∂V ϕ), g ∈ B(u) and ξ ∈ ∂V ϕ(u).

(A4) Let S ∈ (0, T ] and let (un) and (ξn) be sequences in C([0, S];V ) and Lσ(0, S;V ∗) with
σ := min{2, p′}, respectively, such that un → u strongly in C([0, S];V ), [un(t), ξn(t)] ∈
∂V ϕ for a.e. t ∈ (0, S), and

sup
t∈[0,S]

|ϕ(un(t))| +
∫ S

0
|u′n(t)|pHdt+

∫ S

0
|ξn(t)|σV ∗dt

is bounded for all n ∈ N,

and let (gn) be a sequence in Lp′(0, S;V ∗) such that gn(t) ∈ B(un(t)) for a.e. t ∈ (0, S)
and gn → g weakly in Lp′(0, S;V ∗). Then (gn) is precompact in Lp′(0, S;V ∗) and
g(t) ∈ B(u(t)) for a.e. t ∈ (0, S).

(A5) Let S ∈ (0, T ] and u ∈ C([0, S];V )∩W 1,p(0, S;H) be such that supt∈[0,S] |ϕ(u(t))| <∞
and suppose that there exists ξ ∈ Lp′(0, S;V ∗) such that ξ(t) ∈ ∂V ϕ(u(t)) for a.e.
t ∈ (0, S). Then there exists a V ∗-valued strongly measurable function g such that
g(t) ∈ B(u(t)) for a.e. t ∈ (0, S). Moreover, the set B(u) is convex for all u ∈ D(B).

Here we are concerned with the strong solutions of (CP) given as follows:

Definition 3.1. For T ∈ (0,∞), a function u ∈ AC([0, T ];V ) is said to be a strong solution
of (CP) on [0, T ], if the following conditions are satisfied :

(i) u(0) = u0,

(ii) there exists a negligible set N ⊂ (0, T ), i.e., the Lebesgue measure of N is zero, such
that u(t) ∈ D(∂V ϕ) and u′(t) ∈ D(∂V ψ) for all t ∈ [0, T ] \N , and moreover, there exist
sections η(t) ∈ ∂V ψ(u′(t)), ξ(t) ∈ ∂V ϕ(u(t)) and g(t) ∈ B(u(t)) such that

η(t) + ξ(t) + λg(t) = f in V ∗ for all t ∈ [0, T ] \N, (5)

(iii) u(t) ∈ D(ϕ) for all t ∈ [0, T ], and the function ϕ(u(·)) is absolutely continuous on [0, T ].

Furthermore, for T ∈ (0,∞], a function u ∈ AC([0, T );V ) is said to be a strong solution of
(CP) on [0, T ), if u is a strong solution of (CP) on [0, S] for every S ∈ (0, T ).

The following theorem is concerned with the existence of global (in time) strong solutions.

Theorem 3.2 (Global existence). Let p ∈ (1,∞) and T > 0 be fixed. Suppose that (A1)–(A5)
are all satisfied with a sufficiently small ε > 0. Then, for all f ∈ V ∗ and u0 ∈ D(ϕ), there
exists at least one strong solution u ∈W 1,p(0, T ;V ) on [0, T ].

We set X := D(ϕ) with the distance dX(u, v) := |u − v|V + |ϕ(u) − ϕ(v)| for u, v ∈ X,
and moreover, we define

G := {u ∈ C([0,∞);V ); u is a strong solution of (2) on [0,∞)}.

Theorem 3.3. Let p ∈ (1,∞) be given. Suppose that (A1)–(A5) are all satisfied with a
sufficient small constant ε > 0 for any T > 0. Then, for all f ∈ V ∗, the set G is a generalized
semiflow on X.



Now, our main result reads,

Theorem 3.4. Suppose that

(A6) There exist constants α > 0 and C5 ≥ 0 such that

α
{
ϕ(u) + |u|pV

}
≤ 〈ξ + g, u〉 + C5

for all u ∈ D(∂V ϕ), ξ ∈ ∂V ϕ(u) and g ∈ B(u).

In addition, assume f ∈ V ∗ and (A1)–(A5) with an enough small constant ε > 0 for any
T > 0. Then the generalized semiflow G has a global attractor A, and A is a unique maximal
compact invariant subset of X.

4 Applications to generalized Allen-Cahn equations

Let Ω be a bounded domain in RN with C2 boundary ∂Ω. For given functions u0, f : Ω → R,
we first deal with

α(ut(x, t)) − ∆mu(x, t) + ∂rW (x, u(x, t)) 3 f(x), (x, t) ∈ Ω × (0,∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),
u(x, t) = u0(x), x ∈ Ω,

 (6)

where α is a maximal monotone graph in R2 satisfying a p-power growth condition (e.g.,
α(r) = |r|p−2r) with p ≥ 2 and ∆m stands for the so-called m-Laplace operator given by

∆mu(x) = ∇ ·
(
|∇u(x)|m−2∇u(x)

)
, 1 < m <∞.

Moreover, ∂rW stands for the derivative in r of a potential W = W (x, r) : Ω×R → (−∞,+∞]
given by

W (x, r) := j(r) +
∫ r

0
g(x, ρ)dρ for x ∈ Ω, r ∈ R (7)

with a lower semicontinuous convex function j : R → (−∞,+∞] and a (possibly non-
monotone) function g : Ω × R → R integrable in R. Hence ∂rW (x, r) = ∂j(r) + g(x, r).
Then (6) is regarded as a special case of (3); more precisely, ρ = ρ(s) and α(s) := ρ(s)s is
maximal monotone and satisfies a p-power growth condition, and furthermore,

ψ̂(r,p) =
1
m
|p|m +W (r).

Let us introduce the following assumptions.

(a1) g = g(x, r) is a Carathéodory function, i.e., measurable in x and continuous in r.
Moreover, there exist constants q ≥ 2, C6 ≥ 0 and a function a1 ∈ L1(Ω) such that

|g(x, r)|p′ ≤ C6|r|p
′(q−1) + a1(x)

for a.e. x ∈ Ω and all r ∈ R.

(a2) there exist constants σ > 1 and C7 ≥ 0 such that

|r|σ ≤ C7

(
j(r) + 1

)
for all r ∈ R.

Then our result reads,



Theorem 4.1. In addition to (a1) and (a2), assume that

2 ≤ p < max{m∗, σ} and p′(q − 1) < max{m, p, σ},

where m∗ is the Sobolev critical exponent, i.e., m∗ := Nm/(N −m)+. Then, for f ∈ Lp′(Ω)
and u0 ∈ X := {v ∈W 1,m

0 (Ω); j(v(·)) ∈ L1(Ω)}, the initial-boundary value problem (6) admits
at least one Lp-solution on [0,∞). Moreover, the set of solutions for (6) forms a generalized
semiflow G on X. Furthermore, if p ≤ max{m,σ}, then G possesses a global attractor on X.

We next consider the following generalized problem.

α(ut(x, t)) − ∆u(x, t) +N(x, u(x, t),∇u(x, t)) 3 f(x), (x, t) ∈ Ω × (0,∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),
u(x, t) = u0(x), x ∈ Ω,

 (8)

where N = N(x, r,p) is written as follows

N(x, r,p) = ∂j(r) + h(x, r,p) for x ∈ Ω, r ∈ R, p ∈ RN .

It could be emphasized that this problem may not be written as a (generalized) gradient
system such as (3), since the nonlinear term N depends on the gradient of u. We discuss the
existence of global (in time) solutions and their long-time behavior for (6) and (8).

Now we introduce

(a2)′ ∂j is single-valued, and (a2) holds.

(a3) h = h(x, r,p) is a Carathéodory function, i.e., measurable in x and continuous in r and
p. There exist constants q1, q2 ≥ 2, C3 ≥ 0 and a function a2 ∈ L1(Ω) such that

|h(x, r,p)|p′ ≤ C3

(
|r|p′(q1−1) + |p|p′(q2−1)

)
+ a2(x)

for a.e. x ∈ Ω and all r ∈ R and p ∈ RN .

Then we can assure

Theorem 4.2. In addition to (a2)′ and (a3), assume that

2 ≤ p < max{2∗, σ}, p′(q1 − 1) < max{p, σ} and p′(q2 − 1) < 2.

Then, for f ∈ Lp′(Ω) and u0 ∈ X := {v ∈ H1
0 (Ω); j(v(·)) ∈ L1(Ω)}, the initial-boundary

value problem (8) admits at least one Lp-solution on [0,∞). Moreover, the set of solutions for
(8) forms a generalized semiflow G on X. Furthermore, if p = 2 or p ≤ σ, then G possesses
a global attractor on X.
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