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1 Introduction

Let V and V* be a reflexive Banach space and its dual space, respectively, and let H be a
Hilbert space whose dual space H* is identified with itself such that

Ve H=H"<V* (1)

with continuous and densely defined canonical injections. Let ¢ and v be proper lower semi-
continuous functions from V into (—oc, 0], and let dy,dyt : V — 2V be subdifferential
operators of ¢ and v respectively. Moreover, let B be a (possibly) non-monotone and multi-
valued operator from V into V*.

This talk deals with the dynamical system generated by the Cauchy problem (CP) for the
following doubly nonlinear evolution equation:

Oy(u' () + Oye(ut)) + B(u(t)) > f inV*, 0<t< oo, (2)

where f € V* and up € D(p) := {u € V;p(u) < oo} are given data. We first prove the
existence of global (in time) strong solutions of (CP) by imposing appropriate conditions such
as the coerciveness and the boundedness of dy 1), the precompactness of sub-level sets of ¢,
and the boundedness and the compactness of B. The main purpose of this talk is to discuss
the large-time behavior of global solutions for (CP), in particular, the existence of global
attractors; however, since the scope of our abstract framework involves the case where (CP)
admits multiple solutions, the usual semi-group approach to dynamical systems could be no
longer valid. Therefore we employ the notion of generalized semiflow proposed by J.M. Ball [3]
to treat global attractors for (CP).

Furthermore, we apply the preceding abstract theory to generalized Allen-Cahn equations.
Gurtin [4] proposed a generalized Allen-Cahn equation, which describes the evolution of an
order parameter u = u(z,t), of the form

p(u, Vu, up)up = div [8pzﬁ(u, Vu)] — 9, (u, Vu) + f, (3)

where p = p(r,p,s) > 0 is a constitutive modulus, ¢ = ¢(r, p) denotes a free energy density
and f is an external microforce. As a simple instance of the free energy density v, we often
take

9(rp) = o + W (r)

with a double-well potential W (r) = (r? — 1)2. In this talk we treat a generalized Allen-Cahn
equation of degenerate type as well as a perturbation problem of a semilinear generalized
Allen-Cahn equation.

2 Generalized semiflow

The notion of generalized semiflow was first introduced by J.M.Ball [3]. He also defined
global attractors for generalized semiflows and provided a criterion of the existence of global
attractors. We first recall the definition of generalized semiflow.



Definition 2.1. Let X be a metric space with metric dx = dx(-,-). A family G of maps
¢ :[0,00) — X is said to be a generalized semiflow in X, if the following four conditions are
all satisfied:

(H1) (Existence) for each x € X there exists ¢ € G such that p(0) = x;

(H2) (Translation invariance) if ¢ € G and 7 > 0, then the map @7 also belongs to G, where
@7 (t) == @(t + 1) for t € [0,00);

(H3) (Concatenation invariance) if ¢1, 2 € G and p2(0) = p1(7) at some 7 > 0, then the
map 1, the concatenation of p1 and @2 at T, defined by

. ‘Pl(t) if le [077—]7
Y(t) = { pat—71) if te(1,00)

also belongs to G;

(H4) (Upper semicontinuity) if ¢, € G, © € X and ¢,(0) — x in X, then there exist a
subsequence (n') of (n) and ¢ € G such that @, (t) — (t) for each t € [0, 00).

Let G be a generalized semiflow in a metric space X. We define a map T'(t) : 2% — 2% by
Tt)E :={p(t); p€G and ¢(0) € E} for ECX (4)
for each t > 0. Moreover, global attractors for generalized semiflows are defined as follows.

Definition 2.2. Let G be a generalized semiflow in a metric space X and let (T'(t))i>0 be the
family of mappings defined as in (4). A set A C X is said to be a global attractor for the
generalized semiflow G if the following (1)—(iii) hold.

(i) A is compact in X;
(ii) A is invariant under T(t), i.e., T(t)A = A, for all t > 0;
(iii) A attracts any bounded subsets B of X by (T'(t))i>0, i.e.,
tlirgo dist(T'(t)B,.A) = 0,
where dist(-,-) is defined by

dist(A, B) :=sup inf dx(a,b) for A,B C X.
acA beB

3 Main results
Let us first state our basic assumptions: let p € (1,00), T > 0 and € > 0 be fixed.
(A1) There exist positive constants C; (i = 1,2,3,4) such that

Ciluly, < ¥(u)+Cy  for all u € D(v),
I‘)//* < Csp(u)+ Cy  for all [u,n] € dyp.

n

(A2) There exist a reflexive Banach space Xy and a non-decreasing function ¢; on [0, c0)
such that X is compactly embedded in V' and

lulxy < li(lula +[p(u)ly)  for all u € D(Ovg),

where [s]4 := max{s,0} > 0 for s € R.



(A3). D(0yy) C D(B). There exists a constant ¢ > 0 such that

917, < el€]5e + e { ()| + |uf, + 1} with o := min{2,p}
for all w € D(0v ), g € B(u) and £ € dy¢(u).

(A4) Let S € (0,7] and let (uy) and (&,) be sequences in C([0,S]; V) and L?(0, S; V*) with
o := min{2, p'}, respectively, such that u,, — u strongly in C([0,S]; V), [un(t),&n(t)] €
Oy for a.e. t € (0,5), and

S S
sup Jp(un(t)] + /0 jl (£) Byt + /0 ()5 dt

t€[0,5]
is bounded for all n € N,

and let (g,) be a sequence in L (0, S; V*) such that g, (t) € B(u,(t)) for a.e. t € (0,S5)
and g, — ¢ weakly in L (0,5;V*). Then (g,) is precompact in L? (0, 5; V*) and
g(t) € B(u(t)) for a.e. t € (0,95).

(A5) Let S € (0,T] and u € C([0,S]; V)NWLP(0,S; H) be such that Supye(o,g) e (u(t))] < oo
and suppose that there exists & € LP'(0,5;V*) such that £(t) € dyp(u(t)) for ae.

t € (0,5). Then there exists a V*-valued strongly measurable function g such that
g(t) € B(u(t)) for a.e. t € (0,S5). Moreover, the set B(u) is convex for all u € D(B).

Here we are concerned with the strong solutions of (CP) given as follows:

Definition 3.1. For T € (0,00), a function u € AC([0,T]; V) is said to be a strong solution
of (CP) on [0,T], if the following conditions are satisfied:

(i) U(O) = Uuo,

(ii) there exists a negligible set N C (0,T), i.e., the Lebesque measure of N is zero, such
that u(t) € D(dy ) and u/'(t) € D(0y) for allt € [0,T]\ N, and moreover, there exist
sections n(t) € Oy (U (t)), £(t) € dvp(u(t)) and g(t) € B(u(t)) such that

n(t) + &)+ Ag(t) = f in V* for allt € [0,T]\ N, (5)

(iii) u(t) € D(¢) for allt € [0,T], and the function p(u(-)) is absolutely continuous on [0, T].

Furthermore, for T € (0,00], a function uw € AC([0,T);V) is said to be a strong solution of
(CP) on [0,T), if u is a strong solution of (CP) on [0,S] for every S € (0,T).

The following theorem is concerned with the existence of global (in time) strong solutions.

Theorem 3.2 (Global existence). Let p € (1,00) and T > 0 be fized. Suppose that (A1)—(A5)
are all satisfied with a sufficiently small € > 0. Then, for all f € V* and uy € D(p), there
exists at least one strong solution w € W12(0,T;V) on [0,T].

We set X := D(p) with the distance dx(u,v) = |u — v|y + |¢(u) — ¢(v)] for u,v € X,
and moreover, we define

G :={ue C([0,00); V); u is a strong solution of (2) on [0,00)}.

Theorem 3.3. Let p € (1,00) be given. Suppose that (A1)—(A5) are all satisfied with a
sufficient small constant € > 0 for any T > 0. Then, for all f € V*, the set G is a generalized
semiflow on X.



Now, our main result reads,
Theorem 3.4. Suppose that

(A6) There exist constants a > 0 and C5 > 0 such that
afe() +ulf} < (€ +g,u) +Cs
for alluw € D(0y ), £ € Ovp(u) and g € B(u).

In addition, assume f € V* and (A1)-(Ab) with an enough small constant € > 0 for any
T > 0. Then the generalized semiflow G has a global attractor A, and A is a unique mazimal
compact invariant subset of X.

4 Applications to generalized Allen-Cahn equations

Let © be a bounded domain in RY with C? boundary 9. For given functions ug, f : Q — R,
we first deal with

a(ug(z,t)) — Apu(z,t) + 0. W(x,u(z,t)) > f(x), (z,t) € Qx(0,00),
u(z,t) =0, (z,t) € 9Q x (0,00), (6)
u(z,t) = up(x), x €,

where o is a maximal monotone graph in R? satisfying a p-power growth condition (e.g.,
a(r) = |r[P~2r) with p > 2 and A,, stands for the so-called m-Laplace operator given by

Apu(z) =V - (|Vu(@)[" *Vu(z)), 1<m < oo.

Moreover, 0, W stands for the derivative in r of a potential W = W (x,r) : QxR — (—o0, +0o0]
given by

W(z,r):=j(r)+ /Or glx,p)dp for z€Q, reR (7)

with a lower semicontinuous convex function j : R — (—o0,+00] and a (possibly non-
monotone) function g :  x R — R integrable in R. Hence 9,W (x,r) = 9j(r) + g(z,r).
Then (6) is regarded as a special case of (3); more precisely, p = p(s) and a(s) := p(s)s is
maximal monotone and satisfies a p-power growth condition, and furthermore,

~ 1
P(r,p) = —[p|™ + W(r).
m
Let us introduce the following assumptions.

(al) g = g(x,7) is a Carathéodory function, i.e., measurable in x and continuous in 7.
Moreover, there exist constants ¢ > 2, Cs > 0 and a function a; € L!(Q) such that

lg(z, 7)[P" < ColrP @Y + ay ()
for a.e. z € Q and all r € R.

(a2) there exist constants o > 1 and C7 > 0 such that

M7 < Cr(j(r)+1) forall reR

Then our result reads,



Theorem 4.1. In addition to (al) and (a2), assume that
2 <p<max{m*,o} and p'(¢—1) < max{m,p,o},

where m* is the Sobolev critical exponent, i.e., m* := Nm/(N —m)y. Then, for f € Lp/(Q)
andup € X :={v € W&’m(Q); j(v(+)) € LY(Q)}, the initial-boundary value problem (6) admits
at least one LP-solution on [0,00). Moreover, the set of solutions for (6) forms a generalized
semiflow G on X. Furthermore, if p < max{m, o}, then G possesses a global attractor on X.

We next consider the following generalized problem.
a(ug(z,t)) — Au(x,t) + N(x,u(z,t), Vu(z,t)) 3 f(z), (z,t) € Qx(0,00),
u(z,t) =0, (x,t) € 90 x (0, 00), ()
u(z,t) = up(x), x €,
where N = N(z,r,p) is written as follows
N(z,r,p) = 0j(r) + h(z,r,p) for z€Q, reR, peRV.

It could be emphasized that this problem may not be written as a (generalized) gradient
system such as (3), since the nonlinear term N depends on the gradient of u. We discuss the
existence of global (in time) solutions and their long-time behavior for (6) and (8).

Now we introduce

(a2)" 03 is single-valued, and (a2) holds.

(a3) h = h(z,r,p) is a Carathéodory function, i.e., measurable in x and continuous in r and
p. There exist constants ¢1, g > 2, C3 > 0 and a function ag € LI(Q) such that

ha.r.p) < Ca (@ 4 o 7V) + ax(e)

for a.e. x € Q and all » € R and p € RV.
Then we can assure
Theorem 4.2. In addition to (a2)" and (a3), assume that
2 <p<max{2*,0}, p'(q1 —1)<max{p,o} and p'(g2—1) < 2.

Then, for f € LY (Q) and ug € X := {v € H}(Q); j(v(-)) € LY(Q)}, the initial-boundary
value problem (8) admits at least one LP-solution on [0,00). Moreover, the set of solutions for
(8) forms a generalized semiflow G on X. Furthermore, if p =2 or p < o, then G possesses
a global attractor on X.
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