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Introduction The Einstein equations which is the fundamental ones for gen-
eral relativity, have solutions with spacetime singularities in physical models.
A simple question is how generic there are such singularities. For this, Penrose
has shown the following singularity theorem:

Theorem 1 (Penrose [PR65]) If in the initial data set {Σ, h, k}, Σ is non-
compact and contains a closed trapped surface S, then the corresponding maxmal
future development is incomplete.

Here, A closed trapped surface is a compact spacelike (n−2)-dimensional surface
such that a displacement (area element) of S in M along the congruence of the
future outgoing null directions decreases. This theorem says that gravitational
collapse causes formation of spacetime singularities, but does not say that black
holes which are complement regions of causal past of complete future null in-
finity, should be formed. Then, predictability would be breakdown if singularity
can be seen from observers at such infinity. For this, the following weak cosmic
censorship (WCC) conjecture is proposed:

Conjecture 1 (Penrose [PR69], Christodoulou [CD], Klainerman [KS])
For generic asymptotically flat Cauchy data, solutions to the Einstein-matter
equations possess a complete null infinity.

Remark 1 This formulation is of Christodoulou. The original is formulated by
Penrose.

Remark 2 We can find more informations about spacetime singularities, cos-
mic censorship and the initial value problem of the Einstein equations in the
recent text book by Rendall [RA].

To prove the WCC, one need to show (1) global existence theorems in suitable
coordinates and (2) completeness of null infinity (analyzing asymptotic behav-
ior of the solutions). However, it is too difficult to solve the Einstein-matter
equations without assumptions. Therefore, spherical symmetry is assumed as a
typical example. By Birkhoff’s theorem which states that spherically symmet-
ric vacuum solutions to the Einstein equations should be static, matter fields
are needed to generate dynamics. The most simplest matter model is massless
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scalar field. In this case, Christodoulou has proved the WCC [CD]. Dafermos
has generalized this to the case of nonlinear scalar fields [DMa, DMb]. More-
over, the case of wave maps has been considered [Na]. We would like to extend
these result to more general gravitational theory which arising in the unified
theories such as superstring [Nb].

Einstein-Gauss-Bonnet equations Let (M, gµν) be a spacetime, where M
is an orientable n-dimensional smooth manifold and gµν a Lorentzian metric on
it1 . The action we will consider is

S =
∫

dnx
√
−g

[
1

2κ2
n

(−R − αL2) + Lm(ΨA, ∂ΨA)
]

, (1)

where κ2
n is the Newton constant, R is the Ricci scalar and Lm is the Lagrangian

density of matter fields ΨA. The Gauss-Bonnet term L2 is given as

L2 := R2 − 4RµνRµν + RµνρσRµνρσ,

where α is a nonnegative coupling constant, Rµν and Rµνρσ are the Ricci and
Riemann tensors, respectively. Varying this action with respect to the metric
and matter fields, we have the Einstein-Gauss-Bonnet(EGB)-matter equations
as follow:

Gµν + αHµν = κ2
nTµν , (2)

∂µ

(
∂Lm

∂(∂µΨA)

)
− ∂Lm

∂ΨA
= 0, (3)

where
Gµν := Rµν − 1

2
Rgµν ,

Hµν := 2
[
RRµν − 2RαµRα

ν − 2RαβRµανβ + Rαβγ
µ Rναβγ

]
− 1

2
gµνL2

and

Tµν = − 2√
−g

δ(
√
−gLm)
δgµν

is the energy-momentum tensor and T = gµνTµν . Note that we have the Einstein
equations if α = 0.

Spherically symmetric spacetimes in n-dimension Globally hyperbolic
spacetimes M with n-dimensional spherical symmetry imply that the group
SO(n − 1) acts by isometry on M and preserves Ψ. We assume

Q = M/SO(n − 1)
1 Our notation follows the text book by Hawking and Ellis [HE].
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inherits from spacetime metric g the structure of a 1+1-dimensional Lorentzian
manifold with boundary with metric g̃, such that

g = g̃ + r2dσ2,

= −Ω2dudv + r2dσ2, (4)

where dσ2 is the standard metric of (n−2)-sphere. Functions Ω and r depend on
only u and v on Q. The boundary of Q consists of Γ∩S, where Γ is a connected
timelike curve and S is a connected spacelike curve. Γ∩ S is a single point and
r(p) = 0 if and only if p ∈ Γ. Γ is called the centre. It is assumed that Q is
foliated by connected constant v-segments (called ingoing) with past endpoint
on S and by connected constant u-segments (outgoing) with past endpoint on
Γ∩ S. The curve S has a unique limit point i0 on Q \Q, which is called spatial
infinity. Let U be the set of all u defined by

U := {u| sup
v:(u,v)∈Q

r(u, v) = ∞}.

For each u ∈ U , there is a unique v∗(u) such that (u, v∗(u)) ∈ Q \ Q+. Define
the future null infinity I+ as follows:

I+ :=
∪

u∈U
(u, v∗(u)).

We will assume that I+ ⊂ Q \ Q is non-empty.
In this metric, the Einstein equations become as follow:[
1 +

2α̃

r2
K

]
∂u∂vr = −Ω2

4r

[
(n − 3)K + (n − 5)

α̃

r2
K2

]
+

κ2
n

n − 2
rTuv, (5)

[
1 +

2α̃

r2
K

]
∂u∂v log Ω =

(n − 3)
r2

∂ur∂vr +
k(n − 3)

4r2
Ω2 − (n − 4)r

2r2
∂u∂vr

+
α̃Ω2

2r4
K +

Ω2κ2
n

24r2

(
gabTab − 4Tu

u

)
, (6)

[
1 +

2α̃

r2
K

]
∂u(Ω−2∂ur) = − κ2

n

n − 2
rΩ−2Tuu, (7)

[
1 +

2α̃

r2
K

]
∂v(Ω−2∂vr) = − κ2

n

n − 2
rΩ−2Tvv, (8)

Here, α̃ = (n − 3)(n − 4)α and

K ≡ 1 +
4∂ur∂vr

Ω2
,
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and

K ≡ −2(n − 8)Kr∂u∂vr

Ω2
− 16r2

Ω4
(∂u lnΩ∂ur∂v∂vr + ∂v lnΩ∂vr∂u∂ur) + (n − 5)K2

+
8r2

Ω2

(
∂u∂ur∂v∂vr + 4∂u lnΩ∂v lnΩ∂ur∂vr − (∂u∂vr)2

)
.

A cetral point is called regular if K ∼ Cr2 holds around the center, where C is
a non-zero constant.

Now, we will define the generalized Misner-Sharp mass [MN], which is a
useful tool to analyze spherical symmetric gravitational system.

m =
(n − 2)Vn−2r

n−3

2κ2
n

(
K +

α̃

r2
K2

)
, (9)

where Vn−2 is the volume of (n − 2)-sphere. Evolution of the mass is as follow:

∂um = 2rn−2Vn−2Ω−2 (Tuv∂ur − Tuu∂vr) , (10)

and

∂vm = 2rn−2Vn−2Ω−2 (Tuv∂vr − Tvv∂ur) . (11)

First singularity and trapped regions Let p ∈ Q. The indecomposable
past subset J−(p)∩Q ⊂ Q is said to be eventually compactly generated if there
exists a compact subset X ⊂ Q such that

J−(p) ⊂ D+(X) ∪ J−(X). (12)

Here, the causal future (causal past) of p ∈ M , denoted J+(p) (J−(p)), is defined
as the set of events that can be reached by a future (past) directed causal curve
starting from p and future (past) Cauchy development of X is defined as the
set of all points p ∈ Q such that every past-(future-)inextendible non-spacelike
curve through p intersects X. A point p ∈ Q \Q is said to be a first singularity
if J−(p)∩Q is eventually compactly generated and if any eventually compactly
generated indecomposable proper subset of J−(p) ∩ Q is of the form J−(q) for
a q ∈ Q.

Now, we define the following three regions:

• Regular region: R = {q ∈ Q : ∂vr > 0, ∂ur < 0},

• Trapped region: T = {q ∈ Q : ∂vr < 0, ∂ur < 0},

• Marginally trapped region: A = {q ∈ Q : ∂vr = 0, ∂ur < 0}.

In addition, we call R∪A the non-trapped region.
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Main results

Theorem 2 Let p ∈ Q \ Q be a first singularity. Then either

p ∈ Γ \ Γ

or
J−(p) ∩ Q ∩ D+(X) ∩ T ̸= ∅,

for all compact X satisfying (12).

Theorem 3 I+ is future complete.
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