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We consider nonnegative solutions of initial-boundary value problems for the reaction-
diffusion systems of the form

= Au+ K;(z,t)vP, xreD, t>0,
= Av + Ky(x, t)ub?, re D, t>0, (1)
( t) =v(x,t) =0, x€dD, t>0,

u(z,0) = uo(z), v(z,0) =vo(z), z €D,
where py, ps > 1 with pyp, > 1. The domain D is a cone in RY, such as
D={zcR";2#0and z/|z| € Q}, (2)

where ) is some region on SY~! smooth enough.

The initial data ug(z) and vg(z) are nonnegative, bounded and continuous in D, and
up(z) = vo(x) = 0 on dD. The inhomogeneous terms K; (i = 1,2) are nonnegative
continuous functions in D x (0, 00).

In this paper we denote by BC' the set of all bounded continuous functions in D. The
“nontrivial solution” denotes the solution u satisfying (u,v) # 0 in D x (0,7T) with some
T > 0, it thus means that (ug,vg) #Z 0 with the condition (ug,v) € BC.

For the Laplace-Beltrami operator with homogeneous Dirichlet boundary condition
on Q2 € SN¥7! define w, as Dirichlet eigenvalues and v, (6) as the Dirichlet eigenfunctions
corresponding to w, which is normalized so that

/ Un(0)d6 = 1
/Q (0 (0)d0 = 0

for m # n. We introduce the Green’s function G(x,y,t) = G(r,0,p, ¢,t) for the linear
heat equation in the cone D, where

It is following that

r=lz|, p=lyl, 0 =2z/|z| and ¢ = y/ly| € Q (3)

The Green’s function is expressed to

611:0.9.0.0) = o) ¥ exp (<L) SO0 (L) a0pule), (@)



where v, = [(N — 2)?/4 + wn]l/z, and I, is the modified Bessel function or

2/2)%
( ) Zk'F l//fk‘-f-l) (5)

with the Gamma function I'(z) = [~ s* ‘e *ds (see Watson [27, p.p.395]).
For our first theorem we shall give the conditions of the inhomogeneous terms K;
(1 =1,2) as following:

(6)

there exist Cy, 6; and ¢; > 0 such that
Ki(x,t) < Cy(x)% (t +1)% for any x € D, t > 0,

where (z) = (Jz> + 1)"/*.
Let L2° be a Banach space of L>-functions in D with the norm

1€ ][00 = esssup,ep({2)*[€(x)])-

For T' > 0, set
Er = {(u,v) : [0,T] — Lg} x Lg}; [|(u, v)|| p < 00} (7)
with the norm

[(w, )| r = sup {{Ju(t)lloc.s, + [[0()llocs2 3
t€[0,T]

where
ojpi +0;

(Si -
pip; — 1

((5,5) = (1,2),(2,1)). (8)
It is easily seen that Ep is a Banach space.
We begin with stating the existence of the local solution for (1).

Theorem 1. Assume that ug, vo € BC, ug = vg = 0 on dD, and ()" ug(z), (x)%vo(x)
are bounded in D. Suppose that K;(xz,t) (i = 1,2) satisfy (6). Then there exists a
nonnegative solution (u,v) € Ep which solves (1) in D x (0,T) for some T' > 0.

For given initial values (u,vp), let T = T™(up,v9) be a maximal existence time of
the solution of (1). If T* = oo, the solutions are global in time. On the other hand, if
T < oo, then the solutions are not global in time. If the solution blows up in finite time
such that

limsup [[u(-, €)oo + limsup (-, £) oo = 00, (9)
t—T™* t—=T*
then the solution is not global, where || - || denotes the L>-norm with respect to space

variable.



For our second theorem we shall define a region D such that

there exist k > 0 and {x,,}o_; satisfying 0 < |z,| < |Zm1], } (10)

B(Zpm, k|Zm|) € D C D for any m, and lim,, . |2,| = oo,

where B(z,r) denotes the ball with radius r centered at z. We let the inhomogeneous
terms K; (i = 1, 2) satisfy

(11)

there exist O > 0,03, ¢ > 0 and D satisfying (10) such that
K;(xz,t) > Cplz|7t%  for any x € D, t > 0.

For the theorem we should define v, denoting the positive root of the equation y(y+ N —
2) = w1,

o (2+ 05+ 2¢:) + (2 + 05 + 2q)ps (G, ) = (1,2),(2,1)), (12)

pip; — 1

and
H, = {¢ € C(D);&(x) > M(z)~“y(z/|z|) for x € D with some M > 0}.
The main result of this paper is summarized in the following theorem.

Theorem 2. Assume that ug, v € BC, ug = vg = 0 on 9D, and K;(z,t) (i = 1,2)
satisfy (11). Suppose that one of the following two conditions holds;

(i) max{aq, a0} > N + ;.
(11) uy € Hyy with ay < oy or vg € Hy, with as < as.

Then, there ezists no nontrivial nonnegative global solution of (1).
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