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We consider nonnegative solutions of initial-boundary value problems for the reaction-
diffusion systems of the form

⎧⎪⎪⎨
⎪⎪⎩

ut = Δu+K1(x, t)v
p1, x ∈ D, t > 0,

vt = Δv +K2(x, t)u
p2, x ∈ D, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ D,

(1)

where p1, p2 ≥ 1 with p1p2 > 1. The domain D is a cone in RN , such as

D = {x ∈ RN ; x �= 0 and x/|x| ∈ Ω}, (2)

where Ω is some region on SN−1 smooth enough.
The initial data u0(x) and v0(x) are nonnegative, bounded and continuous in D̄, and

u0(x) = v0(x) = 0 on ∂D. The inhomogeneous terms Ki (i = 1, 2) are nonnegative
continuous functions in D × (0,∞).

In this paper we denote by BC the set of all bounded continuous functions in D̄. The
“nontrivial solution” denotes the solution u satisfying (u, v) �≡ 0 in D × (0, T ) with some
T > 0, it thus means that (u0, v0) �≡ 0 with the condition (u0, v0) ∈ BC.

For the Laplace-Beltrami operator with homogeneous Dirichlet boundary condition
on Ω ∈ SN−1, define ωn as Dirichlet eigenvalues and ψn(θ) as the Dirichlet eigenfunctions
corresponding to ωn which is normalized so that

∫
Ω

ψn(θ)dθ = 1.

It is following that

∫
Ω

ψm(θ)ψn(θ)dθ = 0

for m �= n. We introduce the Green’s function G(x, y, t) = G(r, θ, ρ, φ, t) for the linear
heat equation in the cone D, where

r = |x|, ρ = |y|, θ = x/|x| and φ = y/|y| ∈ Ω (3)

The Green’s function is expressed to

G(r, θ, ρ, φ, t) =
1

2t
(rρ)−(N−2)/2 exp

(
−ρ

2 + r2

4t

) ∞∑
n=1

Iνn

(rρ
2t

)
ψn(θ)ψn(φ), (4)
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where νn = [(N − 2)2/4 + ωn]
1/2

, and Iν is the modified Bessel function or

Iν(z) =
(z

2

)ν
∞∑

k=0

(z/2)2k

k!Γ(ν + k + 1)
(5)

with the Gamma function Γ(z) =
∫ ∞
0
sz−1e−sds (see Watson [27, p.p.395]).

For our first theorem we shall give the conditions of the inhomogeneous terms Ki

(i = 1, 2) as following:

there exist CU , σ̂i and q̂i ≥ 0 such that
Ki(x, t) ≤ CU〈x〉σ̂i(t + 1)q̂i for any x ∈ D, t ≥ 0,

}
(6)

where 〈x〉 = (|x|2 + 1)
1/2

.
Let L∞

a be a Banach space of L∞-functions in D with the norm

‖ξ‖∞,a ≡ esssupx∈D(〈x〉a|ξ(x)|).

For T > 0, set

ET = {(u, v) : [0, T ] → L∞
δ1
× L∞

δ2
; ‖(u, v)‖ET

<∞} (7)

with the norm

‖(u, v)‖ET
:= sup

t∈[0,T ]

{‖u(t)‖∞,δ1 + ‖v(t)‖∞,δ2},

where

δi =
σ̂jpi + σ̂i

pipj − 1
((i, j) = (1, 2), (2, 1)). (8)

It is easily seen that ET is a Banach space.
We begin with stating the existence of the local solution for (1).

Theorem 1. Assume that u0, v0 ∈ BC, u0 ≡ v0 ≡ 0 on ∂D, and 〈x〉δ1u0(x), 〈x〉δ2v0(x)
are bounded in D̄. Suppose that Ki(x, t) (i = 1, 2) satisfy (6). Then there exists a
nonnegative solution (u, v) ∈ ET which solves (1) in D × (0, T ) for some T > 0.

For given initial values (u0, v0), let T ∗ = T ∗(u0, v0) be a maximal existence time of
the solution of (1). If T ∗ = ∞, the solutions are global in time. On the other hand, if
T ∗ <∞, then the solutions are not global in time. If the solution blows up in finite time
such that

lim sup
t→T ∗

‖u(·, t)‖∞ + lim sup
t→T ∗

‖v(·, t)‖∞ = ∞, (9)

then the solution is not global, where ‖ · ‖∞ denotes the L∞-norm with respect to space
variable.
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For our second theorem we shall define a region D̃ such that

there exist k > 0 and {xm}∞m=1 satisfying 0 < |xm| < |xm+1|,
B(xm, k|xm|) ⊂ D̃ ⊂ D for any m, and limm→∞ |xm| = ∞,

}
(10)

where B(x, r) denotes the ball with radius r centered at x. We let the inhomogeneous
terms Ki (i = 1, 2) satisfy

there exist CL > 0, σi, qi ≥ 0 and D̃ satisfying (10) such that

Ki(x, t) ≥ CL|x|σitqi for any x ∈ D̃, t ≥ 0.

}
(11)

For the theorem we should define γ+ denoting the positive root of the equation γ(γ+N−
2) = ω1,

αi =
(2 + σi + 2qi) + (2 + σj + 2qj)pi

pipj − 1
((i, j) = (1, 2), (2, 1)), (12)

and

Ha = {ξ ∈ C(D̄); ξ(x) ≥M〈x〉−aψ1(x/|x|) for x ∈ D̃ with some M > 0}.
The main result of this paper is summarized in the following theorem.

Theorem 2. Assume that u0, v0 ∈ BC, u0 ≡ v0 ≡ 0 on ∂D, and Ki(x, t) (i = 1, 2)
satisfy (11). Suppose that one of the following two conditions holds;

(i) max{α1, α2} ≥ N + γ+.

(ii) u0 ∈ Ha1 with a1 < α1 or v0 ∈ Ha2 with a2 < α2.

Then, there exists no nontrivial nonnegative global solution of (1).
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