Analytic semigroups generated by generalized
Ornstein-Uhlenbeck operators

Takeshi Kojima
(Tokyo University of Science)

We consider the operator

\[A_{\Phi,G,V}u := \Delta u - \nabla \Phi \cdot \nabla u + G \cdot \nabla u - Vu \]

on the weighted space \(L^p(\mathbb{R}^N, \mu) \), \(1 < p < \infty \), where \(\mu(dx) = e^{-\Phi}dx \). Under the following assumption on \(\Phi : \mathbb{R}^N \to [0, \infty) \), \(G : \mathbb{R}^N \to \mathbb{R}^N \) and \(V : \mathbb{R}^N \to [0, \infty) \) we show that \(A_{\Phi,G,V} \) with domain \(W^{2,p}(\mathbb{R}^N, \mu) \) (for the definition see below) generates an analytic semigroup on \(L^p(\mathbb{R}^N, \mu) \).

(A1) \(\Phi \in C^2(\mathbb{R}^N, \mathbb{R}) \), \(G \in C^1(\mathbb{R}^N, \mathbb{R}^N), \) \(V \in C^1(\mathbb{R}^N, \mathbb{R}) \) and \(\int_{\mathbb{R}^N} e^{-\Phi(x)} \, dx < \infty \).

(A2) For each \(\varepsilon > 0 \) there exists a constant \(C_\varepsilon > 0 \) such that

\[|\div G| + |D^2\Phi| \leq \varepsilon(|\nabla \Phi|^2 + V) + C_\varepsilon. \]

(A3) There exists a constant \(\beta \in \mathbb{R} \) such that \(G \cdot \nabla \Phi - \div G - V \leq \beta \).

(A3)' \(\div G = G \cdot \nabla \Phi - V \).

(A4) There exists a constant \(\gamma > 0 \) such that \(|G| \leq \gamma(|\nabla \Phi| + V^{1/2} + 1) \).

(A5) For each \(\lambda > 0 \) there exists a constant \(K_\lambda > 0 \) such that \(|\nabla V| \leq \lambda V^{3/2} + K_\lambda \).

Definition. Define the space \(W^{k,p}_{V}(\mathbb{R}^N, \mu) \) as

\[W^{k,p}_{V}(\mathbb{R}^N, \mu) := \left\{ u \in W^{k,p}_{\text{loc}}(\mathbb{R}^N) ; D^\alpha u \in L^p(\mathbb{R}^N, \mu) \text{ if } |\alpha| \leq k, \, Vu \in L^p(\mathbb{R}^N, \mu) \right\}, \]

\[\|u\|_{W^{k,p}_{V}(\mathbb{R}^N, \mu)} := \|u\|_{W^{k,p}(\mathbb{R}^N, \mu)} + \|Vu\|_{L^p(\mathbb{R}^N, \mu)}. \]

Note that \(C^0(\mathbb{R}^N) \) is dense in \(W^{k,p}_{V}(\mathbb{R}^N, \mu) \).

Theorem. Assume that conditions (A1), (A2), (A3), (A4) and (A5) are satisfied. Then the operator

\[A_{\Phi,G,V} = \Delta - \nabla \Phi \cdot \nabla + G \cdot \nabla - V \]

with domain \(D(A_{\Phi,G,V}) = W^{2,p}_{V}(\mathbb{R}^N, \mu) \) generates an analytic semigroup \(T(t) \) on \(L^p(\mathbb{R}^N, \mu) \), \(1 < p < \infty \), such that \(\|T(t)\|_{L^p(\mathbb{R}^N, \mu)} \leq e^{t\beta/p} \), where \(\mu(dx) = e^{-\Phi(x)}dx. \) Furthermore, \(\mu \) is an invariant measure of \(T(t) \), that is,

\[\int_{\mathbb{R}^N} T(t)f \mu(dx) = \int_{\mathbb{R}^N} f \mu(dx) \quad \text{for } f \in C_b(\mathbb{R}^N), \, t \geq 0, \]

if and only if (A3)' holds in addition, where \(C_b(\mathbb{R}^N) \) is the space of bounded continuous functions. Moreover, \(T(t) \) is symmetric if \(p = 2 \) and \(G = 0 \).

This theorem generalizes the result for the case where \(V \equiv 0 \) obtained by [1].

References