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1 Well posedness of the critical drift-diffusion system in two
dimensions

We 1 consider the two dimensional drift-diffusion system in R
2:

∂tn − ∆n + ∇ · (n∇ψ) = 0, t > 0, x ∈ R
2,

∂tp − ∆p −∇ · (p∇ψ) = 0, t > 0, x ∈ R
2,

− ∆ψ = κ(p − n), x ∈ R
2,

n(0, x) = n0(x), p(0, x) = p0(x).

(1.1)

The existence and well-posedness of the solution of the drift-diffusion system (1.1) is obtained by
the integral formula via the semigroup representation with a contraction mapping argument. See
for example, Kurokiba-Ogawa [25]. This method is also valid for the two dimensional simplified
Keller-Segel system: 

∂tu − ∆u + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
2,

− ∆ψ = κu, x ∈ R
2,

u(0, x) = u0(x).

(1.2)

The basic function space for x variable is Lp(Rn), where n
2 < p < n, n = 2, 3 and this framework

is analogous to the result for the Navier-Stokes system. While the energy method works also
well and we may derive the local well-posedness for two dimensional case critical case p = 2 (see
for this case [24]). Note that we need to introduce a weighted L2(Rn) class since we need to
controle the solution of the Poisson equation in two dimensions.

On the other hand, if we consider the other critical case p = 1 by the method of the integral
equation, we should emphasize that the system (1.1) or simpler model (1.2) has the similar
scaling structure of the system as the two dimensional vortex equation of the Navier-Stokes
equation: 

∂tω − ∆ω + u∇ω = 0, t > 0, x ∈ R
2,

− ∆u = rot ω = ∂1ω2 − ∂2ω1, x ∈ R
2,

ω(0, x) = rot u0(x).

(1.3)

When we consider the two dimensional vortex equation (1.3), we choose the basic function space
as L1(R2) and we may derive the existence and uniqueness of the solution of the integral equation
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according to the results Giga-Miyakawa-Osada [15], Giga-Kambe [16]. The space L1(R2) is the
invariant space under the scaling scaling

nλ(t, x) = λ2n(λ2t, λx),

pλ(t, x) = λ2p(λ2t, λx),

ψλ(t, x) = ψ(λ2t, λx),

that keep the equation invariant. It is important to solve the equation in such an invariant class
because we may employ so called the Fujita-Kato Principle for the semilinear equation.

We first recall how to obtain the solution in the basic class L1(R2) following the results [15]
and [16]. The similar argument is possible to apply for the system scaling (1.1) and (1.2) and
for simplicity, we only treat the case (1.2).

We first introduce the corresponding integral equation for the Keller-Segel system (1.2);

u(t) = et∆u0 −
∫ t

0
e(t−s)∆∇(u∇ψ)ds.

Let |||u||| ≡ supt∈I t1−1/p‖u(t)‖p, where I = [0, T ) and 4/3 ≤ p < 2. Then we have

‖u(t)‖p ≤‖et∆u0‖p + C

∫ t

0
|t − s|−(1/r−1/p)−1/2‖u∇ψ‖rds

≤‖et∆u0‖p + C

∫ t

0
|t − s|−(1/r−1/p)−1/2‖u(s)‖p‖∇ψ‖sds

≤‖et∆u0‖p + C

∫ t

0
|t − s|−1/p‖u(s)‖2

pds

≤‖et∆u0‖p + C

∫ t

0
|t − s|−1/ps−2(1−1/p)ds

(
sup
t∈I

t(1−1/p)‖u(t)‖p

)2
,

(1.4)

where 1/r = 1/p + 1/s and 1/s = 1/p − 1/2. Namely we have 1/r − 1/p + 1/2 = 1/p. Then we
need

1
r

=
2
p
− 1

2
≤ 1

and
2
p
≤ 3

2

implies 4/3 ≤ p. Hence under the condition 4/3 ≤ p < 2, the integral∫ t

0
|t − s|−1/ps−2(1−1/p)ds = t(1−1/p)B

converges, where B > 0 is a constant determined by the beta function. Then we have

sup
I

t1−1/p‖u(t)‖p ≤ sup
I

t1−1/p‖et∆u0‖p + B
(
sup
t∈I

t(1−1/p)‖u(t)‖p

)2
.

Now we see by t → 0 the first term supI t1−1/p‖et∆u0‖p can be small (this follows from the fact
C∞

0 is dense Lp and the initial data u0 may be approximated by a C∞
0 function that as t → 0

we have the a priori bound for the solution. Analogous method may implies the estimate for
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the difference of the solutions. To show that the solution is belonging to L1(R2), we treat the
integral equation in L1 and use the L1-L1 boundedness for the heat flow to have

‖u(t)‖1 ≤‖et∆u0‖1 + C

∫ t

0
|t − s|−1/2‖u∇ψ‖1ds

≤‖u0‖1 + C

∫ t

0
|t − s|−1/2‖u(s)‖4/3‖∇ψ‖4ds

≤‖u0‖1 + C

∫ t

0
|t − s|−1/2‖u(s)‖4/3‖u(s)‖4/3ds

≤‖u0‖1 + C

∫ t

0
|t − s|−1/2s−1/2ds

(
sup
t∈I

t1/4‖u(t)‖4/3

)2
,

(1.5)

where
‖∇(−∆)−1u(s)‖4 ≤ C‖u(s)‖4/3,

1
4

=
3
4
− 1

2
is the Hardy-Littlewood-Sobolev inequality in n = 2. The last integration is finite and it follows
the uniform boundedness of supt∈I t1/4‖u(t)‖4/3 and hence the solution belongs to L1.

Giga-Miyakawa-Osada [15] applied the above method to the vortex equation (1.3) to show
the existence and uniqueness of the solution for the initial data in L1(R2).

Proposition 1.1 (Giga-Miyakawa-Osada) For ω0 ∈ L1(R2) the two dimensional vortex equa-
tion of the Navier-Stokes system (1.3) has a unique local solution ω(t) ∈ C

(
[0, T ); L1(R2)

)
∩

C
(
(0, T ); Lp(R2)

)
.

We may apply the similar method to the 2 dimensional simplified Keller-Segel system and
we may have the following:

Theorem 1.2 For u0 ∈ L1(R2), there exists a unique time local solution u for the two dimen-
sional Keller-Segel equation (1.2) and it satisfies u(t) ∈ C

(
[0, T ); L1(R2)

)
∩ C

(
(0, T ); Lp(R2)

)
.

With this regards, the result in Kurokiba-Ogawa [24] can be extended into the case 1 ≤ p ≤ 2
when we consider n = 2.

For the vortex equation (1.3), the solution ω(t) satisfies the maximum principle and the
uniform a priori bound follows. This shows the solution globally exists. On the other hand, for
the Keller-Segel system (1.2) and the drift-diffusion system (1.1), the solutions of those system
do not satisfy the maximum principle and hence we need to employ the entropy functional
to establish the existence of the global solution. Indeed, Nagai-Senba-Yoshida [34], Biler [2],
Nagai-Senba-Suzuki [33] employ the entropy functional to show the existence of the time global
solution of (1.2) for a bounded domain Ω:∫

Ω|
u log udx − 1

2

∫
Ω

uψdx +
∫ t

0

∫
Ω

u
∣∣∇(log u − ψ)

∣∣dxdt

≤
∫

Ω
u0 log u0dx − 1

2

∫
Ω

u0(−∆)−1u0dx.

(1.6)

We may derive the Lyapunov function from this entropy functional and the justification of this
functional is very important. We see by a formal computation that∫

Ω
u log udx − 1

2

∫
Ω

uψdx =
∫

Ω
u log udx − 1

2
‖∇ψ‖2

2,
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however the second term of the right hand side does not have a sense as far as we consider the
positive solution. Namely since |x| → ∞

ψ 	 log |x|−1

it follows that ∇ψ 
∈ L2(R2).
This difficulty can be recovered by introducing “zero mean solutions”. If we consider the

case when the difference of the two carriers densities is equal to zero, we may consider the zero
mean solution for the difference of the solution of the drift-diffusion system and one may justify
the above integration by parts for this type of solutions. With this regards, we introduce the
Hardy class H1(R2) and then the entropy functional can have its meaning for the solution in
this class.

Introducing v = n + p and w = n − p, the equivalent form of the system (1.1) is as follows:
∂tv − ∆v + ∇ · (w∇ψ) = 0, t > 0, x ∈ R

2,

∂tw − ∆w + ∇ · (v∇ψ) = 0, t > 0, x ∈ R
2,

− ∆ψ = −κw, x ∈ R
2,

v(0, x) = n0(x) + p0(x), w(0, x) = n0(x) − p0(x).

(1.7)

In this system we may naturally assume that w has the “zero mean value”. For v, we consider
the deviation from the average v − v̄, where

v̄ =
∫

R2

v(t, x)dx =
∫

R2

v0(x)dx

and we obtain the system:

∂tv − ∆v + ∇ · (w∇ψ) = 0, t > 0, x ∈ R
2,

∂tw − ∆w + κv̄w + ∇ · (v∇ψ) = 0, t > 0, x ∈ R
2,

− ∆ψ = −κw, x ∈ R
2,

v(t, x) → 0, w(t, x) → 0, |x| → ∞,

v(0, x) = v0 ≡ n0(x) + p0(x) − n0 + p0,

w(0, x) = w0 ≡ n0(x) − p0(x).

(1.8)

We choose the Hardy space H1(R2) as the basic function class and shows the time local existence
and well-posedness.
Definition. For λ > 0 and φ ∈ S(R2), we let φλ = λ−2φ(λ−1x) then for 0 < p < ∞, we define
the Hardy space Hp by

Hp = Hp(R2) =

{
f ∈ Lp

loc(R
2); ‖f‖Hp ≡

∥∥∥∥sup
λ>0

|φλ ∗ f |
∥∥∥∥

p

< ∞
}

.

In particular, it is well known that for p = 1, the dual space of the Hardy space H1 coincides
with a class of the bounded mean oscillation)

BMO = {f ∈ L1
loc(R

2); ‖f‖BMO < ∞}.

Our main result is the following:
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Theorem 1.3 (Ogawa-Shimizu[36]) Let κ = ±1 and the initial data (v0, w0) ∈ H1(R2)×H1(R2)
then there exists T > 0 and a unique solution (v, w) of (1.8) and satisfying v, w ∈ C

(
[0, T );H1

)
∩

L2
(
0, T ; Ḣ1,1

)
∩ C

(
(0, T ); Ḣ2,1

)
∩ C1

(
(0, T );H1

)
. Moreover the solution flow map (v0, w0) →

(v, w) is the Lipschitz continuous H1(R2)2 → C
(
[0, T );H1

)2.

The equation (1.8) has the invariant scale in the Hardy space H1(R2) and according to the
Fujita-Kato principle, the existence of the time global solution in the same class for the small
initial data immediately follows if the initial data is sufficiently small and κv̄ > 0. However such
a result is not quite important for this kind of system since the repulsive drift-diffusion system
should have a global solution in large data and the attractive system (that has the opposite sign
of the nonlinear coupling) has a finite time blowing up solution and it is required for identifying
the threshold value for the global existence of the solution.

When f ∈ H1(R2), it is known that the following estimate holds: For f ∈ H1(R2), the
Fourier transform f̂ is subject to ∫

R2

|f̂(ξ)|2
|ξ|2 dξ ≤ C‖f‖2

H1 . (1.9)

In this case, if −∆ψ = w and w ∈ H1(R2), then we have

‖∇ψ‖2
2 =

∫
R2

|ξψ̂|2dξ =
∫

R2

|ŵ|2
|ξ|2 dξ ≤ C‖w‖2

H1

and this shows the entropy functional remains finite for the solution in the Hardy space.

2 L1 type energy inequality

The proof of Theorem 1.3 essentially relys on the endpoint type maximal regularity. The detailed
proof can be found in [36]. We summarize the crucial part. For the solution of the initial value
problem of the heat equation, the key estimate is considered as a type of the energy estimate:
It is well known that the solution of heat equation{

∂tu − ∆u = 0, t > 0, x ∈ R
n,

u(0, x) = φ(x).
(2.1)

satisfies the energy inequality:

‖u(t)‖2
2 +

∫ t

0
‖∇u(s)‖2

2ds ≤ ‖u0‖2
2

In particular, for the smooth solution we may derive the energy equality for the solution. The
Lp version of the estimate with 1 < p < ∞ is known as the parabolic estimate. We establish the
corresponding estimate for p = 1 in the parabolic estimate when we exchange L1 space into H1.

Theorem 2.1 Let et∆ be the heat semi group and φ ∈ H1. Then we have(∫ T

0
‖∇et∆φ‖2

H1dt

)1/2

≤ C‖φ‖H1 , (2.2)

where C is a positive constant independent of T > 0.
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Theorem 2.2 Let 1 < θ < ∞ and u be a solution of the inhomogeneous heat equation:{
∂tu − ∆u = f, t > 0, x ∈ R

n,

u(0, x) = φ(x).
(2.3)

Then we have
‖∇u‖L2(I;Ḃ0

1,2) ≤ C
(
‖φ‖H1 + ‖f‖L2(I;H−1,1)

)
,

where I = R+.

This estimate is essentially equivalent to the endpoint type maximal regularity for the so-
lution of the heat equation in the Besov space (cf. Ogawa-Shimizu [37]). The detailed proof
requires the interpolation argument in the real analytic method.

The proof of Theorem 2.1 needs various estimates in the real and harmonic analysis and the
meaning of the estimate is not directly understandable. To explain a heuristic reason that the
estimate in Theorem 2.1 holds, we show the following proposition.

Proposition 2.3 Let et∆ be the heat semi group and let φ ∈ L1(R2). Then the following
estimate (∫ T

0
‖∇et∆φ‖2

1dt

)1/2

≤ C‖φ‖1 (2.4)

generally fails.

Proof of Proposition 2.3. Noting the L1-L∞ estimate for the Fourier transform:

sup
ξ

|f̂(ξ)| ≤ 1
2π

‖f‖1

we set f = ∇et∆φ to see that∫ ∞

0
‖∇et∆φ‖2

1dt ≥4π2

∫ ∞

0

(
sup

ξ

∣∣ξe−t|ξ|2 φ̂(ξ)
∣∣)2

dt

=4π2

∫ ∞

0

1
t

(
sup

ξ

∣∣√tξe−t|ξ|2 φ̂(ξ)
∣∣)2

dt

(where we choose some η instead of taking supremum over ξ)

≥4π2

∫ ∞

0

1
t

(∣∣ηe−|η|2∣∣)2
|φ̂(

√
t
−1

η)|2dt

≥C

∫ ∞

0

|φ̂(
√

t
−1

η)|2
t

dt

letting
|η|√

t
= r, we see from dt = −2

|η|2
r3

dr

=C

∫ ∞

0

|φ̂(rω)|2
r

dr.
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Here ω = η/|η| is a unit vector. Integrating in ω ∈ S
1 and taking the average, we obtain that∫ ∞

0
‖∇et∆φ‖2

1dt ≥ C(η)
∫

R2

|φ̂(ξ)|2
|ξ|2 dξ. (2.5)

By taking appropriate φ, the right hand side diverges in generally (for instance, choose φ̂(0) 
= 0).
Even if the integral average of φ is 0, we may not obtain the finiteness of the right hand side
only assuming that φ ∈ L1(R2).

We should note that Proposition 2.3 itself gives an another proof of the estimate (1.9). Note
that Proposition 2.3 can be derived without using (1.9).

To establish the solvability of the system (1.1) in the Hardy space we need to show the
bilinear estimate for the nonlinear term. The following estimate is a generalization of the well
known estimate for the product of the divergence free vector and rotation free vector due to
Coifman-Lions-Mayer-Semmes [8].

Proposition 2.4 Let ∇w ∈ H1(R2) and ∇ψ ∈ Ḣ1 ∩L∞. Then we have the following estimate:

‖∇ · (w∇ψ)‖H1 ≤ C
(
‖w‖2‖∆ψ‖2 + ‖∇w‖H1‖∇ψ‖∞

)
.

Analogous estimate of the above proposition is known in the Triebel-Lizorkin space, however
it does not include the endpoint case: For f , g ∈ Ḟ s

p,σ ∩ Lr with 1 < p ≤ ∞, 1 ≤ σ ≤ ∞
1/p = 1/r + 1/q and s > 0, it holds that

‖fg‖Ḟ s
p,σ

≤ C
(
‖f‖r‖g‖Ḟ s

q,σ
+ ‖f‖Ḟ s

q,σ
‖g‖r

)
The proof of the above estimate requires the Lp boundedness of the maximal function and the
limiting case p = 1 is eliminated. Our estimate is corresponding to the case p = 1 by observing

‖∇(fg)‖Ḟ 0
1,2

	 ‖∇(fg)‖H1 .

3 Large time behavior of solutions of three dimensional critical
drift-diffusion system

In this section, we consider the large time behavior of solutions for the drift diffusion system in
three dimensions: 

∂tn − ∆n + ∇ · (n∇ψ) = 0, t > 0, x ∈ R
3,

∂tp − ∆p −∇ · (p∇ψ) = 0, t > 0, x ∈ R
3,

− ∆ψ = p − n, x ∈ R
3,

n(0, x) = n0(x), p(0, x) = p0(x).

(3.1)

Carpio [6] obtained the large time asymptotic profile of the solution to the two and three
dimensional Navier-Stokes system and it shows that the solutions can be expressed by the
heat kernel and its derivatives as t → ∞. This simultaneously shows the lower bound of the
decaying solution. One may generalized this fact to the drift-diffusion system (3.1). For the
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parabolic Keller-Segel system, Nagai-Yamada [35] and M.Kato [21] have already showed that
the asymptotic behavior of the large time solution.

Here we concentrate an analogous result for the drift-diffusion system in the case when
n = 3. The solution of the initial value problem has an asymptotic expansion up to the second
asymtotics. We consider the corresponding integral equation:

n(t) = et∆n0 −
∫ t

0
e(t−s)∆∇ · (n(s)∇ψ(s))ds,

p(t) = et∆p0 +
∫ t

0
e(t−s)∆∇ · (p(s)∇ψ(s))ds,

− ∆ψ = p − n.

If the decay of the nonlinear coupling in the above equation is faster than the decay order of
the term of the initial data, then the asymptotic behavior of the solution is determined by the
first term of the right hand sides. Indeed, the effect from the nonlinear term decays faster than
the top term G(t) since the each nonlinear coupling behaves as the square of the heat kernel
in principle. Namely if we assume the decay of the initial data at |x| → ∞, then we have for
1 ≤ q ≤ ∞

‖n(t) − MnG(t)‖q = o(t−γ), ‖p(t) − MpG(t)‖q = o(t−γ), γ =
n

2

(
1 − 1

q

)
, (3.2)

where Mn =
∫

R3 n(t)dx, Mp =
∫

R3 p(t)dx are total charges and under the positivety conditions
n0 ≥ 0, p0 ≥ 0, those quantities are preserved and hence they are constants in time. Now our
main concern here is the second asymptotic profiles. For n = 3, the second expansion of the
large time solution meets the critical situations.

Using the first asymptotic expansion (3.2) and noting the nonlinear term decays faster in t,
then one may expect that the second asymptotic would be obtained by the derivatives of the
heat kernel. From ‖n(t)‖q = O(t−γ) (γ = n

2 (1 − 1
q )) if the coefficient of the nonlinear coupling

Vn =
∫ ∞

0

∫
Rn

n(s, x)∇(−∆)−1(n(s, x) − p(s, x))dxds

is well-defined, then the inner product of Vn (or Vp) and ∇G(t) may be the candidate of the
second asymptotic form. This was observed by Escobedo-Zuazua [9] for the solution of the heat
convention equation and for the solution of the Navier-Stokes system by Carpio [6] in lower
dimensions n = 2, 3, and general dimensions by Fujigaki-Miyakawa [10]. When n = 3, we have
‖n(s)‖∞ = O(s−3/2) and ‖∇(−∆)−1(n(s) − p(s))‖q = O(s−γ+ 1

2 ) thus if q = 1 we see formally
that

V =
∫ ∞

0
(1 + s)−1ds = ∞

and the coefficient of the asymptotic may possibly diverge. This is not the case for the asymptotic
behavior of the solution of the Navier-Stokes equation or the parabolic Keller-Segel system (see
Nagai-Yamada [35]); 

∂tu − ∆u + ∇ · (u∇ψ) = 0, t > 0, x ∈ R
n,

∂tψ − ∆ψ + ψ = u, t > 0, x ∈ R
n,

u(0, x) = u0(x), ψ(0, x) = ψ0(x)
(3.3)
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under the condition n ≥ 2.
We then introduce the correction term for the asymptotic behavior and obtain the second

asymptotic expansion of the solution for (3.1) in n = 3.

Theorem 3.1 (Ogawa-Yamamoto [38]) Let κ = 1 and 3/2 ≤ r < 3. For the initial data
(n0, p0) ∈

(
L1(R3) ∩ L∞(R3)

)2 with n0 ≥ 0, p0 ≥ 0, there exists a unique global solution (n, p)
to (3.1) and for 1 ≤ q ≤ ∞, n, p ∈ C

(
[0,∞); Lq

)
∩ C1

(
(0,∞); Lr

)
∩ C

(
(0,∞); W 2,r

)
. More-

over under the extra condition n0, p0 ∈ L1
2(R

3), the solution satisfies the following asymptotic
behavior: For 1 ≤ q ≤ ∞ and G(t) =

(
1

4πt

)3/2 exp(− |x|2
4t ), we have

‖n(t) − MnG(t) − (mn + Vn) · ∇G(t) + MnWJ(t)‖q = o(t−γ− 1
2 ), t → ∞,

‖p(t) − MpG(t) − (mp + Vp) · ∇G(t) + MpWJ(t)‖q = o(t−γ− 1
2 ), t → ∞,

where γ = 3
2

(
1 − 1

q

)
. The correction term J(t) is given by the heat kernel G(t) as

J(t) =
∫ t

0
∇G(t − s) ∗

(
G(1 + s)∇(−∆)−1G(1 + s))ds

and W = Mn − Mp, mn =
∫

R3 xn0(x)dx, mp =
∫

R3 xp0(x)dx,
Vn =

∫ ∞

0

∫
R3

n(s)∇(−∆)−1(n(s) − p(s))dxds,

Vp =
∫ ∞

0

∫
R3

p(s)∇(−∆)−1(n(s) − p(s))dxds.

The constant vectors Vp and Vn seem diverge in a rough observation, however those quantities
are finite and well-defined indeed. This means that the problem is rather similar to the case
when we consider the asymptotic behavior of the solution in the Navier-Stokes system. When
the initial data satisfies the electrically equilibrium condition W = 0, then the result is reduced
into the same situation to the higher dimensions.

We should notice that recently Yamada [43] obtained the higher order asymptotic expansion
for the solution of the parabolic Keller-Segel system (3.3) up to order n. The main difference
between the system of (3.3) and (3.1) is that the principal symbol appearing in front of the
nonlinear coupling is not smooth for (3.1) while the former case, it is smooth. Hence the large
time asymptotic can be determined by essentially the heat kernel and its combinations for the
parabolic Keller-Segel case. Indeed the correction term J(t) for the solution of (3.1) can be
obtained similarly but slightly simpler form such as

J(t) =
∫ t

0
G(t − s) ∗ ∆G2(1 + s)ds.

One can show easily that

J(t) =
∫ t

0

(
1

4π(1 + s)

)n/2

∆G

(
t − s − 1

2

)
ds

and it follows that J(t) 	 (1 + t)−n (cf. [21]). For the drift-diffusion case, however, the inverse
of the Laplacian involves a singularity and the symbol of the operator appears in the nonlinear
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term is not smooth. This makes the problem slightly complicated since the solution does not
have the fast decaying properties in space direction. This is connecting the basic nature of the
solution to (3.1) that has a stronger non-local effect than the parabolic Keller-Segel system (3.3).
In our case, we may show that

C1(1 + t)−γ−1/2 ≤ ‖J(t)‖q ≤ C2(1 + t)−γ−1/2.

The upper bound can be obtained by noting that∫ t

0
∇G(t − s)

∫
R3

G(s)∇(−∆)−1G(s)dxds = 0.

Finaly, we show the upper and lower bound for ‖J(t)‖∞. From the above we see from∫ t

0
∇G(t − s)

∫
R3

G(1 + s)∇(−∆)−1G(1 + s)dxds = 0.

that

‖J(t)‖∞ =
∥∥∥∥J(t) −

∫ t

0
∇G(t − s)

∫
R3

G(s)∇(−∆)−1G(s)dxds

∥∥∥∥
∞

≤
∥∥∥∫ t

0

∫
R3

(
∇G(t − s, x − y) −∇G(t − s, x)

)
× G(1 + s, y)∇(−∆)−1G(1 + s, y)dxds

∥∥∥
∞

≤C(1 + t)−2.

While for the lower bound, we employ the Plancherel identity to see that

J(t)|x=0 =
∫ t

0

∫
R3

e−(t−s)|ξ|2(iξ) ·
∫

R3

(−i)
η

|η|2 e−(1+s)|η−ξ|2e−(1+s)|η|2dηdξds

=
∫ t

0

∫∫
R3×R3

ξ · η
|η|2 e−(1+t)|ξ−σ(t,s)η|2e−(2t+1−s)σ(t,s)|η|2dηdξds,

(3.4)

where
σ(t, s) =

1 + s

1 + t
.

Since the odd integrant is vanishing, we see by the change of variable that

J(t)|x=0 =
∫ t

0

∫∫
R3×R3

(ζ + σ(t, s)η) · η
|η|2 e−(1+t)|ζ|2e−(1+2t−s)σ(t,s)|η|2dηdζds

=
∫ t

0
σ(t, s)

∫∫
R3×R3

e−(1+t)|ζ|2e−(1+2t−s)σ(t,s)|η|2dηdζds

=π3

(
1

1 + t

)2 ∫ t

0
(1 + s)1/2

(
1

1 + 2t − s

)3/2

ds

(3.5)

which shows the lower bound of J(t)|x=0 as (1 + t)−2.
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