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We consider the asymptotic behavior of the energy of weak solutions to
the Navier-Stokes equations in Rn, n ≥ 2 ;





∂u

∂t
−∆u + (u · ∇)u +∇p = 0 in Rn × (0,∞),

div u = 0 in Rn × (0,∞),

u(·, 0) = a in Rn,

(N-S)

where u = u(x, t) = (u1(x, t), . . . , un(x, t)) and p = p(x, t) denote the un-
known velocity vector and the pressure of the fluid at point (x, t) ∈ Rn ×
(0,∞), while a = a(x) = (a1(x), . . . , an(x)) is a given initial velocity vector
field.

Recently, another aspect of asymptotic behavior of the energy of solu-
tions has been investigated. Skalák [4], [3] proved the asymptotic energy
concentration in the following sense:

lim
t→∞

‖Eλu(t)‖2

‖u(t)‖2

= 1 (1)

under the assumption that lim supt→∞ ‖A1/2u(t)‖2/‖u(t)‖2 < ∞ for the
strong solution of (N-S), where {Eλ}λ≥0 is the spectral decomposition of
the Stokes operator A, and ‖ · ‖2 denotes the L2-norm. We say the energy of
u concentrates in the phase (frequency) λ if u satisfies (1).
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Our aim is to characterize the set of initial data which causes (1). For
that purpose, we introduce the set

Kδ
m, α = {φ ∈ L2 ; |φ̂(ξ)| ≥ α|ξ|m for |ξ| ≤ δ} (2)

for α, δ > 0 and m ≥ 0. The set Kδ
m, α may be regarded as a generalization

of the set which was originally given by Schonbeck [2].

Theorem. Let 2 ≤ n ≤ 4, and let r > 1 and m ≥ 0 be

(i) for n = 2,

1 < r <
4

3
, 0 ≤ m <

4

r
− 3,

(ii) for n = 3, 4,

1 < r <
n

n− 1
, 0 ≤ m <

n

r
− (n− 1).

If a ∈ Lr
σ ∩ L2

σ ∩ Kδ
m, α for some α, δ > 0, then for every turbulent solution

u(t) of (N-S) there exist T > 0 and a constant C(n, r, m, δ, α, T ) > 0 such
that ∣∣∣∣

‖Eλu(t)‖2

‖u(t)‖2

− 1

∣∣∣∣ ≤
C

λ
t−(n/r−n+1−m) (3)

holds for all λ and for all t > T .

Remark. Skalák [4] proved an energy concentration (1) under the assump-
tion lim supt→∞ ‖A1/2u(t)‖2/‖u(t)‖2 < ∞. From the assumption of Theorem
1, we can show that limt→∞ ‖A1/2u(t)‖2/‖u(t)‖2 = 0. On the other hand,
our advantage seems to characterize the set of initial data which causes an
energy concentration. Moreover, we get the explicit convergence rate of (1).
The reason why we introduce the set Kδ

m, α of initial data that causes (1) is
because of the lower bound of the L2-decay of solutions to (N-S).

To prove Theorem, the next Lemma plays an important role.

Lemma. Let 2 ≤ n ≤ 4. Let r and m be

(i) for n = 2,

1 < r <
4

3
, 0 ≤ m <

4

r
− 3
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(ii) for n = 3, 4,

1 < r <
n

n− 1
, 0 ≤ m <

n

r
− (n− 1).

If a ∈ Lr
σ ∩ L2

σ ∩Kδ
0, σ, Then every turbulent solution u(t) of (N-S) satisfies

‖∇u(t)‖2
2

‖u(t)‖2
2

≤ O(t−(n/r−n+1−m)), (4)

as t →∞.
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