Holomorphic families of linear *m*-accretive operators in Banach spaces and application to Schrödinger operators in L^p

Yoshiki Maeda (Tokyo University of Science)

For two closed linear operators T and A in a Banach space X we consider

 $T + \kappa A$ with domain $D_0 := D(T) \cap D(A)$,

where κ is a complex parameter and D_0 is assumed to be non-trivial.

Definition. $\{T(\kappa); \kappa \in G_0 \subset \mathbb{C}\}$ is said to be a holomorphic family of type (A) if

(i) $T(\kappa)$ is a closed linear operator with domain $D(T(\kappa)) = D$ independent of κ .

(ii) $T(\kappa)u$ is holomorphic with respect to $\kappa \in G_0$ for every $u \in D$.

Now we consider the Schrödinger type operators $-\Delta + \kappa V(x)$ with $V(x) \ge 0$. Here $T := -\Delta$ with domain $D(T) := W^{2,p}(\mathbb{R}^N)$ is *m*-accretive in $L^p = L^p(\mathbb{R}^N)$ (1 . Let <math>A be the maximal operator of multiplication by $V(x) \in L^p_{\text{loc}}(\mathbb{R}^N)$ (or $V(x) \in L^p_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$): Au(x) := V(x)u(x) with domain $D(A) := \{u \in L^p; Vu \in L^p\}$. Then A is also *m*-accretive in L^p and its Yosida approximation is given by $A_{\varepsilon}v(x) = V_{\varepsilon}(x)v(x)$ $(v \in L^p)$, where $V_{\varepsilon}(x) := V(x)[1 + \varepsilon V(x)]^{-1} \ \forall \varepsilon > 0$.

The nonnegative potential V(x) is assumed to satisfy either (\mathbf{V}) or $(\mathbf{V})_{\varepsilon}$:

(V) $V \in C^1(\mathbb{R}^N)$ and there are nonnegative constants a, b and c such that

(1)
$$|\nabla V(x)|^2 \le a[V(x)]^3 + b[V(x)]^2 + c[V(x)] \quad \forall x \in \mathbb{R}^N.$$

 $(\mathbf{V})_{\varepsilon}$ is nothing but condition (\mathbf{V}) in which V(x) is replaced with $V_{\varepsilon}(x)$.

Then, generalizing Kato [1, Theorem 7.1], we have the following

- **Theorem.** Let T and A be as stated above. Assume that (\mathbf{V}) (or $(\mathbf{V})_{\varepsilon}$). Then
- (i) $\{T + \kappa A; \kappa \notin \Omega\} = \{-\Delta + \kappa V(x); \kappa \notin \Omega\}$ forms a holomorphic family of type (A),
- (ii) $T + \kappa A = -\Delta + \kappa V(x)$ is m-accretive in L^p for $\kappa \notin \Omega$ with $\operatorname{Re} \kappa \geq 0$, where

(2)
$$\Omega: y^2 \le \frac{p^2}{2(p-1)} \left(x - \frac{p-1}{4} a \right) \left(\frac{(p-2)^2}{2(p-1)} x - \frac{p^2}{8} a \right)$$
 and $x \le \frac{p-1}{4} a$ $(x+iy \in \mathbb{C}).$

Example. We consider several typical examples.

(i) Let $V(x) := |x|^2$. Then a = b = 0 and c = 4 in (1). Thus we see from Theorem that $\{-\Delta + \kappa |x|^2; \kappa \notin \Omega\}$ forms a holomorphic family of type (A) and $-\Delta + \kappa |x|^2$ is *m*-accretive in L^p for $\kappa \notin \Omega$ with $\operatorname{Re} \kappa \ge 0$, where Ω is given by a sector region of the complex plane.

(ii) Let $V(x) := |x|^{-2}$ and so $V_{\varepsilon}(x) = (|x|^2 + \varepsilon)^{-1}$. Then a = 4 and b = c = 0 in $(\mathbf{V})_{\varepsilon}$. Thus we see from Theorem that $\{-\Delta + \kappa |x|^{-2}; \kappa \notin \Omega\}$ forms a holomorphic family of type (A) and $-\Delta + \kappa |x|^{-2}$ is *m*-accretive in L^p for $\kappa \notin \Omega$ with $\operatorname{Re} \kappa \ge 0$, where Ω is given by a hyperbolic region of the complex plane. However, this result is not sharp. We can obtain a sharper result for the inverse square potential $|x|^{-2}$ which include Kato's result (see [1, Example 7.4]). Roughly speaking, instead of (2) we can obtain the closed hyperbolic region $y^2 \le (x - C_1(p, N))(C_3(p)x - C_2(p, N))$ and $x \le C_1(p, N)$ $(x + iy \in \mathbb{C})$, where $C_j(p, N)$ (j = 1, 2) are constants dependent on p and N, and $C_3(p) \ge 0$ is a constant dependent on p.

References

[1] T. Kato, Remarks on holomorphic families of Schrödinger and Dirac operators, Differential Equations, Mathematics Studies **92**, North-Holland, Amsterdam, 1984, pp. 341–352.