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In this talk we consider the analytic C0-semigroup on Lp(RN) (1 < p < ∞) generated by
−Ap, where Ap is the following second order elliptic operator:

Apu := −div(a∇u) − F · ∇u+ V u = −
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for u ∈ D(Ap) :=
{
u ∈ W 2,p(RN) |V u ∈ Lp(RN)

}
.

Here the coefficients a = (ajk), F = (Fj) and V satisfy the following conditions:

(H0) a ∈ C1(RN ; RN×N) ∩W 1,∞(RN ; RN×N), F ∈ C1(RN ; RN), 0 ≤ V ∈ L∞
loc(RN ; R);

(H1) ajk = akj and a0[ξ] :=
∑N

j,k=1 ajk(x)ξjξk ≥ ν|ξ|2 (x, ξ ∈ RN) for some constant ν > 0;
(H2) c0 ≤ U ≤ V ≤ c1U for some constants c0, c1 > 0;
(H3) |F · ξ| ≤ κU1/2a0[ξ]

1/2 for some constant κ ≥ 0;
(H4) divF + θU ≥ 0 for some constant 0 ≤ θ < 1,
where U ∈ C1(RN ; R) satisfies that a0[∇U ]1/2 ≤ γU3/2 + Cγ for some γ > 0 and Cγ ≥ 0.

Metafune-Pallara-Prüss-Schnaubelt [1] showed that, under almost the same conditions, −Ap

generates a C0-semigroup on Lp(RN) analytic and contractive in the sector Σ(π/2− tan−1 δp),
where Σ(ψ) := {z ∈ C ; | arg z| < ψ} and

δ2
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.

In particular, if F ≡ 0 and V ≡ 0, then κ = θ = 0 in conditions (H3), (H4) and hence δp
coincides with the known constant |p− 2|/(2

√
p− 1) determined by Okazawa [2].

The purpose of this talk is to show that −Ap generates a C0-semigroup on Lp(RN) analytic
and possibly non-contractive in the extended sector Σ(π/2 − tan−1 δ), where δ := min{δ2, δp}.
Main Theorem. Let 1 < p <∞. Assume that conditions (H0)–(H4) are satisfied with
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p
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)
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Then −Ap generates a C0-semigroup on Lp(RN) analytic in the sector Σ(π/2− tan−1 δ), where
δ := min{δ2, δp}.

The proof is carried out by generalizing the exposition in Ouhabaz [3].

Remark. If p ∈ (1, 2) ∪ (p0,∞) (for some p0 > 2), then we can show that δ2 < δp, that is,
our result improves the previous result in [1].
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