Analytic C_0 -semigroups on $L^p(\mathbb{R}^N)$ generated by second order elliptic operators with unbounded coefficients

Motohiro Sobajima (Tokyo University of Science)

In this talk we consider the analytic C_0 -semigroup on $L^p(\mathbb{R}^N)$ $(1 generated by <math>-A_p$, where A_p is the following second order elliptic operator:

$$A_{p}u := -\operatorname{div}(a\nabla u) - F \cdot \nabla u + Vu = -\sum_{j,k=1}^{N} \frac{\partial}{\partial x_{k}} \left(a_{jk} \frac{\partial u}{\partial x_{j}} \right) - \sum_{j=1}^{N} F_{j} \frac{\partial u}{\partial x_{j}} + Vu$$

for $u \in D(A_{p}) := \left\{ u \in W^{2,p}(\mathbb{R}^{N}) \mid Vu \in L^{p}(\mathbb{R}^{N}) \right\}.$

Here the coefficients $a = (a_{jk}), F = (F_j)$ and V satisfy the following conditions:

(H0) $a \in C^1(\mathbb{R}^N; \mathbb{R}^{N \times N}) \cap W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^{N \times N}), F \in C^1(\mathbb{R}^N; \mathbb{R}^N), 0 \le V \in L^{\infty}_{\text{loc}}(\mathbb{R}^N; \mathbb{R});$

(H1)
$$a_{jk} = a_{kj}$$
 and $a_0[\xi] := \sum_{j,k=1}^N a_{jk}(x)\xi_j\xi_k \ge \nu|\xi|^2 \ (x,\xi \in \mathbb{R}^N)$ for some constant $\nu > 0$;

- (H2) $c_0 \leq U \leq V \leq c_1 U$ for some constants $c_0, c_1 > 0$;
- (H3) $|F \cdot \xi| \leq \kappa U^{1/2} a_0[\xi]^{1/2}$ for some constant $\kappa \geq 0$;
- (H4) $\operatorname{div} F + \theta U \ge 0$ for some constant $0 \le \theta < 1$,

where $U \in C^1(\mathbb{R}^N; \mathbb{R})$ satisfies that $a_0[\nabla U]^{1/2} \leq \gamma U^{3/2} + C_{\gamma}$ for some $\gamma > 0$ and $C_{\gamma} \geq 0$.

Metafune-Pallara-Prüss-Schnaubelt [1] showed that, under almost the same conditions, $-A_p$ generates a C_0 -semigroup on $L^p(\mathbb{R}^N)$ analytic and contractive in the sector $\Sigma(\pi/2 - \tan^{-1}\delta_p)$, where $\Sigma(\psi) := \{z \in \mathbb{C} ; |\arg z| < \psi\}$ and

$$\delta_p^2 := \frac{(p-2)^2}{4(p-1)} + \frac{\kappa^2}{4(1-\theta/p)}$$

In particular, if $F \equiv 0$ and $V \equiv 0$, then $\kappa = \theta = 0$ in conditions (H3), (H4) and hence δ_p coincides with the known constant $|p-2|/(2\sqrt{p-1})$ determined by Okazawa [2].

The purpose of this talk is to show that $-A_p$ generates a C_0 -semigroup on $L^p(\mathbb{R}^N)$ analytic and possibly non-contractive in the extended sector $\Sigma(\pi/2 - \tan^{-1}\delta)$, where $\delta := \min\{\delta_2, \delta_p\}$.

Main Theorem. Let 1 . Assume that conditions (H0)–(H4) are satisfied with

$$\frac{\theta}{p} + (p-1)\gamma\left(\frac{\kappa}{p} + \frac{\gamma}{4}\right) < 1$$

Then $-A_p$ generates a C_0 -semigroup on $L^p(\mathbb{R}^N)$ analytic in the sector $\Sigma(\pi/2 - \tan^{-1}\delta)$, where $\delta := \min\{\delta_2, \delta_p\}.$

The proof is carried out by generalizing the exposition in Ouhabaz [3].

Remark. If $p \in (1,2) \cup (p_0,\infty)$ (for some $p_0 > 2$), then we can show that $\delta_2 < \delta_p$, that is, our result improves the previous result in [1].

References

- [1] G. Metafune, D. Pallara, J. Prüss, R. Schnaubelt, L^p -theory for elliptic operators on \mathbb{R}^d with singular coefficients, Z. Anal. Anwendungen **24** (2005), 497–521.
- [2] N. Okazawa, Sectorialness of second order elliptic operators in divergence form, Proc. Amer. Math. Soc. 113 (1991), 701–706.
- [3] E. M. Ouhabaz, "Analysis of Heat Equations on Domains," Princeton Univ. Press, Oxford, 2005.