Local and global existence for semilinear parabolic equations in terms of fractional powers of operators

Keisuke Nagaoka (Tokyo University of Science)

Let A be the negative generator of a bounded analytic semigroup $\{e^{-tA}\}$ on a Banach space X and A^{γ} be its fractional power. Then we consider the abstract Cauchy problem:

(**P**)
$$\begin{cases} u'(t) + Au(t) = f(u(t)), \ t > 0, \\ u(0) = \phi, \end{cases}$$

where f is a nonlinear operator in X. Assume that the following conditions are satisfied:

(A) there exist constants $\lambda > 0$ and M > 0 such that $||e^{-tA}v|| \le Me^{-\lambda t}||v|| \forall v \in X, \forall t > 0;$ (F1) f(0) = 0;

- (F2) there exist constants $C_0 > 0$, $\nu > 1$, and $0 \le \alpha < 1$ such that $\|f(v) - f(w)\| \le C_0(\|A^{\alpha}v\| + \|A^{\alpha}w\|)^{\nu-1}\|A^{\alpha}v - A^{\alpha}w\| \forall v, \forall w \in D(A^{\alpha});$
- (**Φ**) (initial condition) $\phi \in D(A^{\theta})$ for $\theta \in [0, \alpha]$.

To solve (\mathbf{P}) we consider the solvability of the corresponding integral equation:

(IE)
$$u(t) = e^{-tA}\phi + \int_0^t e^{-(t-s)A} f(u(s))ds.$$

The purpose of this talk is to give a detailed proof of the local and global solvability of (IE) and (P). We slightly modify the presentation in [1].

Theorem. Under the assumption stated above with $1 - \alpha \nu + \theta(\nu - 1) \ge 0$ and $(\alpha - \theta)\nu < 1$ one has the following assertions:

- 1) (local existence) There exists T > 0 such that (IE) has a local solution $u \in C([0, T]; D(A^{\theta}))$ satisfying $||A^{\alpha}u(t)|| \leq C(\alpha)t^{-(\alpha-\theta)}e^{-\lambda t}||A^{\theta}\phi||, t \in (0,T], with some constant <math>C(\alpha) > 0$. Moreover, u is a strong solution of (P).
- 2) (global existence) There exists $\delta > 0$ such that if $||A^{\theta}\phi|| \leq \delta$, then (IE) has a global solution $u \in C([0,\infty); D(A^{\theta}))$ satisfying $||A^{\alpha}u(t)|| \leq C(\alpha)t^{-(\alpha-\theta)}e^{-\lambda t}||A^{\theta}\phi||, t \in [0,\infty)$, with some constant $C(\alpha) > 0$. Moreover, u is a strong solution of (**P**).
- 3) (uniqueness) In the case where $1 \alpha \nu + \theta(\nu 1) > 0$, a solution of (IE) is unique in the class of u such that $t^{\alpha-\theta}u \in BC((0,T]; D(A^{\alpha}))$. In the case where $1 \alpha\nu + \theta(\nu 1) = 0$, it is unique in the class of u such that $t^{\alpha-\theta}u \in BC((0,T]; D(A^{\alpha}))$ and $\lim_{t\to 0} t^{\alpha-\theta} ||A^{\alpha}u(t)|| = 0$.

References

 H. Hoshino, Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations, Funkcial. Ekvac. 34 (1991), 475–494.