Linear Schrodinger evolution equations with
Coulomb potential with moving center!
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1. Problem

For T" > 0 and N > 3 we consider the Cauchy problem for the Schrodinger
equation:

ou u
(SE) za—l—Au+m+V1(m,t)u:f(a:,t), (z,t) € RN x [0, 7],

u(-,0) = ug(-) € H*(RN) N Hy(RY)

in L? = L*(RY), where a : [0,7] — RY expresses the center of the Coulomb
potential, V; and f : RY x [0,7] — R are another real-valued potential and an
inhomogeneous term while

Hy(RY) := {u € L*(RY); |z[*u € L*(RM)}.

The existence of strong solutions to (SE) (with f = 0) has been solved by
Baudouin-Kavian-Puel [1] partly with formal computation. In this talk we re-
construct their argument with rigorous proofs.

2. Known result
Baudouin-Kavian-Puel established the case where N = 3 in the following
Theorem 1 ([1, Theorems 1 and 2]). Assume that a and Vy satisfy
a € W»L0,T) := W20, T; RY),

(1) (L4 |z[*)~'Vs € WEH0,T; L*(RY))  and
(1+ |22)7'VV; € LY(0,T; L=(RY))".

Then (SE) with f =0 has a unique solution u such that

(2) u € WH(0,T; L*(RM)) N Cy ([0, T); H*(RY) N Hy(RY)),
NL>®(0,T; HA(RY) N Hy(RY)) N C([0, T]; HY(RYN) N Hy (RY)),

where u € Cy(I; H) means that u is weakly continuous from I into H.

First, we review their proof. For € > 0 they consider the approximate problem

Ou,

(SE). i + Au. + Viu. + Viue =0, (x,t) € RY x 0,7,

(-, 0) = up(-) € HA(RN) N Hy(RY)
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and obtain u. € C([0,T]; H*(RY) N Hy(RY)). Here the approximate potentials
Vg and VE € C([0,T]; C2(RY)) are defined as

Vi (2,1) := (£ + o — a(t) )72,

Vi) =T 56 = [ [ (ot - et = es)(s)otw) dys.

Let x € C°(R) and p € C5°(RY) be nonnegative functions such that

/Zx(t)dt:/RNp(x)dle.

Then 7T, and (. in the definition of V" are defined as

T.(s) := sign(s)min{|s|, e}, C(z,t) := e Vx(t/e)p(z/e).
Among others they have shown the following energy estimates:

ou,
ot

@z, + | S0, < Cllwollmnm, ¢ € 10,71,

where C' is independent of €. Thus one can extract a subsequence (u.), which
converges to a solution of (SE) satisfying (2).
However, it seems that their proof has some errors. For instance, the definition

of Vi should be modified.

3. Our result

In this context the purpose of this talk is to rewrite the original proof in [1]
correctly and to establish Theorem 1 with an inhomogeneous term.

Theorem 2. In addition to (1) assume that f satisfies
(3) fe W0, T; L*(RV)) N L'(0, T; H'(RY) N Hy(RY)).

Then (SE) with initial value ug € H*(RY) N Hy(RY) has a unique solution satis-
fying (2) and the energy estimate:

(4) 101 + llu®) | r2nm, < Collluollazam, + 1F11r),

where Co = Cy(a, V1, T) is a positive constant, while ||f||r is given as follows:

T
[flle = HfIILoow,T;H)JF/O Wouf O+ aallF Ol + 1F @) ) it

a1 > 0 1s a constant depending on a.



To prove Theorem 2 we define V7, Vi and f more carefully. We define the
extension operator P : Wh1(0,T; X) — WHH(R; X) by

o). te 0,11,
(Po)(t) := (2—t/T)e(2T —1t), te(T,27),

(1+¢/T)p(=1), te[-T,0),

0, otherwise.

Assume that suppxy C [—1,1] and suppp C B(0;1) := {z € RY;|z| < 1}. Let
0<neWh®(0,00) be defined as

1, rel0,1),
n(r)=<2-r rell,?2),
0, r € [2,00).

For e > 0 let x.(¢) := e~ 'x(t/e) and n.(x) := n(e|z|). Then we can define as

(5) Ve(x,t) ‘= (52 + |z — ag(t)|2)71/2’
(6) = ((n(PWV1)) * ¢.) (z,t)
- /B(o;l) /—1 ne(z —ey)(PV1)(z — ey, t — es)x(s)p(y) ds} dy,

(M felwt) =((PH ) 1)
— /B(O;l) /_1(Pf)(il‘ —ey,t —es)x(s)p(y) ds] dy.

In (5) a. is defined as

a.(t) :== a(0) + /;((P%) * X£>(s) ds.

Then (SE). is dealt with by [2, Theorem 1.4]. In a similar way as in [1] we
prove that the family {u.} of solutions to (SE). satisfies

10 suc ()| + llue ()| a2nm, < Collluollaznm, + [1£]17)
and there exists a unique strong solution u of (SE) satisfying (2) and (4).

References

[1] L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrédinger equation
with singular potentials and application to bilinear optimal control, J. Differential
Equations 216 (2005), 188-222.

[2] N. Okazawa, Remarks on linear evolution equations of hyperbolic type in Hilbert
space, Adv. Math. Sci. Appl. 8 (1998), 399-423.



