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1. Problem

For T > 0 and N ≥ 3 we consider the Cauchy problem for the Schrödinger

equation:

(SE)

i
∂u

∂t
+ ∆u +

u

|x − a(t)|
+ V1(x, t)u = f(x, t), (x, t) ∈ RN × [0, T ],

u(·, 0) = u0(·) ∈ H2(RN) ∩ H2(RN)

in L2 = L2(RN), where a : [0, T ] → RN expresses the center of the Coulomb

potential, V1 and f : RN × [0, T ] → R are another real-valued potential and an

inhomogeneous term while

H2(RN) := {u ∈ L2(RN); |x|2u ∈ L2(RN)}.

The existence of strong solutions to (SE) (with f ≡ 0) has been solved by

Baudouin-Kavian-Puel [1] partly with formal computation. In this talk we re-

construct their argument with rigorous proofs.

2. Known result

Baudouin-Kavian-Puel established the case where N = 3 in the following

Theorem 1 ([1, Theorems 1 and 2]). Assume that a and V1 satisfy

(1)


a ∈ W 2,1(0, T ) := W 2,1(0, T ; RN),

(1 + |x|2)−1V1 ∈ W 1,1
(
0, T ; L∞(RN)

)
and

(1 + |x|2)−1∇V1 ∈ L1
(
0, T ; L∞(RN)

)N
.

Then (SE) with f = 0 has a unique solution u such that

u ∈W 1,∞(
0, T ; L2(RN)

)
∩ Cw

(
[0, T ]; H2(RN) ∩ H2(RN)

)
,(2)

∩L∞(0, T ; H2(RN) ∩ H2(RN)) ∩ C([0, T ]; H1(RN) ∩ H1(RN)),

where u ∈ Cw(I; H) means that u is weakly continuous from I into H.

First, we review their proof. For ε > 0 they consider the approximate problem

(SE)ε

i
∂uε

∂t
+ ∆uε + V ε

0 uε + V ε
1 uε = 0, (x, t) ∈ RN × [0, T ],

uε(·, 0) = u0(·) ∈ H2(RN) ∩ H2(RN)

1This talk is based on my joint work with Professors N.Okazawa and T. Yokota.

1



and obtain uε ∈ C([0, T ]; H2(RN) ∩ H2(RN)). Here the approximate potentials

V ε
0 and V ε

1 ∈ C([0, T ]; C2
b (RN)) are defined as

V ε
0 (x, t) := (ε2 + |x − a(t)|2)−1/2,

V ε
1 (x, t) := Tε(V1) ∗ ζε =

∫
R

∫
RN

(Tε ◦ V1)(x − εy, t − εs)χ(s)ρ(y) dy ds.

Let χ ∈ C∞
0 (R) and ρ ∈ C∞

0 (RN) be nonnegative functions such that∫ ∞

−∞
χ(t) dt =

∫
RN

ρ(x) dx = 1.

Then Tε and ζε in the definition of V ε
1 are defined as

Tε(s) := sign(s) min{|s|, ε−1}, ζε(x, t) := ε−1−Nχ(t/ε)ρ(x/ε).

Among others they have shown the following energy estimates:

∥uε(t)∥H2∩H2
+

∥∥∥∂uε

∂t
(t)

∥∥∥
L2

≤ C∥u0∥H2∩H2
, t ∈ [0, T ],

where C is independent of ε. Thus one can extract a subsequence (uε′), which

converges to a solution of (SE) satisfying (2).

However, it seems that their proof has some errors. For instance, the definition

of V ε
1 should be modified.

3. Our result

In this context the purpose of this talk is to rewrite the original proof in [1]

correctly and to establish Theorem 1 with an inhomogeneous term.

Theorem 2. In addition to (1) assume that f satisfies

(3) f ∈ W 1,1(0, T ; L2(RN)) ∩ L1(0, T ; H1(RN) ∩ H2(RN)).

Then (SE) with initial value u0 ∈ H2(RN)∩H2(RN) has a unique solution satis-

fying (2) and the energy estimate:

(4) ∥∂ tu(t)∥ + ∥u(t)∥H2∩H2
≤ C0(∥u0∥H2∩H2

+ ∥f∥F ),

where C0 = C0(a, V1, T ) is a positive constant, while ∥f∥F is given as follows:

∥f∥F := ∥f∥L∞(0,T ; L2) +

∫ T

0

(∥∂ tf(t)∥ + α1∥f(t)∥H1 + ∥f(t)∥H2) dt;

α1 > 0 is a constant depending on a.

2



To prove Theorem 2 we define V ε
0 , V ε

1 and f more carefully. We define the

extension operator P : W 1,1(0, T ; X) → W 1,1(R; X) by

(Pφ)(t) :=


φ(t), t ∈ [0, T ],

(2 − t/T )φ(2T − t), t ∈ (T, 2T ],

(1 + t/T )φ(−t), t ∈ [−T, 0),

0, otherwise.

Assume that supp χ ⊂ [−1, 1] and supp ρ ⊂ B(0; 1) := {x ∈ RN ; |x| ≤ 1}. Let

0 ≤ η ∈ W 1,∞(0,∞) be defined as

η(r) :=


1, r ∈ [0, 1),

2 − r, r ∈ [1, 2),

0, r ∈ [2,∞).

For ε > 0 let χε(t) := ε−1χ(t/ε) and ηε(x) := η(ε|x|). Then we can define as

V ε
0 (x, t) := (ε2 + |x − aε(t)|2)−1/2,(5)

V ε
1 (x, t) :=

(
(ηε(PV1)) ∗ ζε

)
(x, t)(6)

=

∫
B(0;1)

[∫ 1

−1

ηε(x − εy)(PV1)(x − εy, t − εs)χ(s)ρ(y) ds
]
dy,

fε(x, t) :=
(
(Pf) ∗ ζε

)
(x, t)(7)

=

∫
B(0;1)

[∫ 1

−1

(Pf)(x − εy, t − εs)χ(s)ρ(y) ds
]
dy.

In (5) aε is defined as

aε(t) := a(0) +

∫ t

0

((
P

da

ds

)
∗ χε

)
(s) ds.

Then (SE)ε is dealt with by [2, Theorem 1.4]. In a similar way as in [1] we

prove that the family {uε} of solutions to (SE)ε satisfies

∥∂ tuε(t)∥ + ∥uε(t)∥H2∩H2
≤ C0(∥u0∥H2∩H2

+ ∥f∥F )

and there exists a unique strong solution u of (SE) satisfying (2) and (4).
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