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We consider the following nonlinear Sturm-Liouville problem

—u"(t)+ f(u(t)) = du(t), tel, (0.1)
u(t)y > 0, tel, (0.2)
u(0) = u(l) =0, (0.3)

where I := (0,1) and A > 0 is a parameter.
We assume that f(u) satisfies the following conditions (A.1)—(A.3):
(A.1) f(u) is a function of C* for u > 0 satisfying £(0) = f/(0) = 0.

(A.2) f(u)/u is strictly increasing for u > 0.

(A.3) f(u)/u — o0 as u — .
The typical examples of f which satisfy (A.1)—(A.3) are as follows.

) = w >,

f) = wlosut)  (p>1),
O e L]
f) = et (p>1)

(1) Let 1 < ¢ < oo be fixed. For any given o > 0, there exists a unique solution pair of (1.1)—(1.3) (A\,u) =
(Mg, @), uq) € Ry x C2(I) such that |Jug|, = .

(2) The set {(A(g,@),uq) : @ > 0} gives all solutions of (1.1)-(1.3), which is an unbounded C*-bifurcation curve
emanating from (72,0) in R4 x L(I) and A(q, ) is C! and strictly increasing for o > 0.

In this talk, we first establish the asymptotic expansion formulas for A\(g, @) as & — oo and o — 0. Secondly, based
on these formulas, we introduce the framework of inverse bifurcation problem and introduce some recent results how
to determine the unknown nonlinear term f from the L%-bifurcation curve A(q, «).
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