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We consider the following nonlinear Sturm-Liouville problem

−u′′(t) + f(u(t)) = λu(t), t ∈ I, (0.1)

u(t) > 0, t ∈ I, (0.2)

u(0) = u(1) = 0, (0.3)

where I := (0, 1) and λ > 0 is a parameter.
We assume that f(u) satisfies the following conditions (A.1)–(A.3):

(A.1) f(u) is a function of C1 for u ≥ 0 satisfying f(0) = f ′(0) = 0.

(A.2) f(u)/u is strictly increasing for u ≥ 0.

(A.3) f(u)/u → ∞ as u → ∞.
The typical examples of f which satisfy (A.1)–(A.3) are as follows.

f(u) = up (p > 1),

f(u) = up log(u + 1) (p > 1),

f(u) = up ·
(

1 − 1
1 + u2

)
(p > 1),

f(u) = upeu (p > 1).

(1) Let 1 ≤ q < ∞ be fixed. For any given α > 0, there exists a unique solution pair of (1.1)–(1.3) (λ, u) =
(λ(q, α), uα) ∈ R+ × C2(Ī) such that ‖uα‖q = α.

(2) The set {(λ(q, α), uα) : α > 0} gives all solutions of (1.1)–(1.3), which is an unbounded C1-bifurcation curve
emanating from (π2, 0) in R+ × Lq(I) and λ(q, α) is C1 and strictly increasing for α > 0.

In this talk, we first establish the asymptotic expansion formulas for λ(q, α) as α → ∞ and α → 0. Secondly, based
on these formulas, we introduce the framework of inverse bifurcation problem and introduce some recent results how
to determine the unknown nonlinear term f from the Lq-bifurcation curve λ(q, α).
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