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We consider the following Cauchy problem (1) for the nonlinear wave equation (1)a:
∂2t u = u∂x(u∂xu), (t, x) ∈ (0, T ]× R, (1)a

u(0, x) = φ(x), x ∈ R, (1)b

∂tu(0, x) = ψ(x), x ∈ R, (1)c

(1)

where u(t, x) is unknown real valued function.
We call the equation (1)a second sound equation, which describes the wave of the tempera-
ture(entropy) in the superfluid.
We denote Hs as Sobolev space (1− ∂2x)

−s/2L2(R).

Theorem 1 (Keiichi Kato and S). Let φ ∈ C1 ∩ L∞ and ∂xφ, ψ ∈ Hs with s > 1
2
. Suppose

that there exists a positive constant A such that φ(x) ≥ A > 0 for ∀x ∈ R. Then there exist
T > 0 and a unique solution u of (1) such that

u− φ ∈
∩

j=0,1,2

Cj([0, T ];Hs−j+1) and u(t, x) ≥ A/2 for (t, x) ∈ [0, T ]× R,

where T depends only on ∥φ∥C1, ∥∂xφ∥Hs, ∥ψ∥Hsand A.

Theorem 2 (Keiichi Kato and S). Suppose that φ ∈ C1 ∩ L∞, ∂xφ ∈ Hs and ψ ∈ Hs with
s > 1

2
, φ(x) ≥ A > 0 for ∀x ∈ R. For any number T > 0 and A > 0, there exists a number

δ > 0 such that if both ∥ψ∥L2 and ∥φ(x)∂xφ(x)∥L2 are less than δ, then the solution of (1)
satisfying u− φ ∈

∩
j=0,1,2C

j([0, T ];Hs−j+1) is unique.

In [1], T. J. R. Hughes, T. Kato and J. E. Marsden prove the well-posedness of some class
of second order quasi-linear hyperbolic equations including (1)a. They obtain their result as an
application of their abstract theorem. However, we can not apply their theorem to our problem,
since the initial data φ is not L2 integrable. We can apply the method of [1] to our existence
problem for sufficiently smooth initial data.
In order to prove the uniqueness, one assume the restriction on the size of the solutions in [1].
On the other hand, by a priori estimate, we give the result of uniqueness under the restriction
on the size of initial data, instead of the solutions.
In [2], P. Zhang and Y. Zheng treat the nonlinear wave equation ∂2t u = c(u)∂x(c(u)∂xu) on the
condition that 0 <∃ C1 ≤ C(u) ≤∃ C2 for u ∈ R, which does not include (1)a.
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