発散又は渦度零の解の界面正則性

加納誠・佐藤友彦(学習院・理)・渡辺一雄(学習院・理)

 $\Omega \subset \mathbb{R}^3$ を境界が滑らかな有界領域とする. $B(x) = (B^1(x), B^2(x), B^3(x))$, $J(x) = (J^1(x), J^2(x), J^3(x))$ を \mathbb{R}^3 -値関数 $(x \in \Omega)$ とし, g = g(x) を実数値関数, $\nabla = (\partial_{x_1}, \partial_{x_2}, \partial_{x_3})$ とする. $\mathcal{M} \subset \mathbb{R}^3$ を超曲面とする.

 \mathcal{M} によって Ω が 2 つの領域 Ω_{\pm} に分けられている状況を考え, $\Gamma = \Gamma_{\pm} = \Omega \cap \mathcal{M}$ を Ω_{\pm} の界面, n を Γ_{-} 上の外向単位法ベクトルとする. 界面上の点 $x \in \Gamma$ に対して、

$$B_{\pm}(x) := \lim_{\Omega_{+} \ni \xi \to x} B(\xi), \qquad [B]_{-}^{+} := B_{+} - B_{-} \text{ on } \Gamma$$

とする. また,

$$H(\operatorname{div},\Omega) = \{ u \in L^2(\Omega)^3 | \nabla \cdot u \in L^2(\Omega) \}$$
$$H(\operatorname{rot},\Omega) = \{ u \in L^2(\Omega)^3 | \nabla \times u \in L^2(\Omega)^3 \}$$

とする. 本講演では、 渦度零または発散零の方程式系 (cf.[1])

(1)
$$\begin{cases} \nabla \times B = 0 \\ \nabla \cdot B = g \end{cases} \quad \text{in } \Omega_{\pm}, \quad \text{(2)} \begin{cases} \nabla \times B = J \\ \nabla \cdot B = 0 \end{cases} \quad \text{in } \Omega_{\pm}.$$

の解 B の界面における正則性について考える.

Theorem 1 $\Omega \subset \mathbb{R}^3$ を Lipschitz 境界を持つ有界領域, $\mathcal{M} \subset \mathbb{R}^3$ を $C^{1,1}$ 曲面 とする $(\mathcal{M} \cap \Omega \neq \emptyset, \Omega = \Omega_+ \cup (\Omega \cap \mathcal{M}) \cup \Omega_-)$. $g \in H^1(\Omega_\pm)$ とし, $B \in H^1(\Omega)^3$ を (I) の解とする, この時, $n \times B \in H^2_{loc}(\Omega)^3$ が成り立つ.

Remark 1 $g \in H^1(\Omega_\pm)$ とし, $B \in H^1(\Omega)$ を (1) の解とすると, $n \cdot B \in H^2_{loc}(\Omega)$ は一般的には成り立たない。この事は、次の反例により簡単に説明できる.

 $\mathcal{M}=\{x=(x_1,x_2,x_3)|x_3=0\},\Omega=\{|x|<1\},n=(0,0,1),B=(0,0,|x_3|)$ とし, g を

$$g = \begin{cases} 1, & (x_3 > 0) \\ -1, & (x_3 < 0) \end{cases}$$

とすると、B と g は (1) を満たす. 実際, $\nabla \cdot B = \partial_{x_3} B^3 = \partial_{x_3} |x_3| = g$, $\nabla \times B = (0,0,0)$. しかし, $n \cdot B = |x_3| \notin H^2_{loc}(\Omega)$ である.

 $\nabla \cdot B = 0$ の問題 (2) については次の結果が発表されており、Theorem 1 は、この定理と対を成す.

Theorem 2 ([2]) \mathcal{M} を $C^{1,1}$ 曲面とし, $J \in H(\mathrm{rot}, \Omega_{\pm})$ とする. $B \in H^1(\Omega)^3$ を (2) の解とする. この時 $n \cdot B \in H^2_{loc}(\Omega)$ が成り立つ.

次に, Magneto-Hydro-Dynamics(MHD, 電磁流体) についての結果を述べる. 方程式系は以下の通りである:

(MHD)
$$\begin{cases} \nabla p &= J \times B, \\ \nabla \cdot B &= 0, \\ \nabla \times B &= \mu J, \end{cases}$$

ここで $J \in H^1(\Omega_{\pm})^3$ とする.

Theorem 3 $J\in H^1(\Omega_\pm)^3$, Ω_\pm で有界とする. $B\in H^1(\Omega)^3$, $p\in H^1(\Omega)$ が (MHD) の解とする. もし, $p+\frac{1}{2\mu}|B|^2\in H^1(\Omega)$, 界面条件

$$[J \cdot B]_{-}^{+}(n \cdot B) = 0, \ [J \cdot B]_{-}^{+}(n \times B) = |B|^{2}[n \times J]_{-}^{+} \text{ on } \Gamma,$$

を満たすならば $\nabla p \times B \in H^1(\Omega)^3$.

Theorem 4 $J \in H^1(\Omega_\pm)^3$, Ω_\pm で有界とする. $B \in H^1(\Omega_\pm)^3$, $p \in H^1(\Omega_\pm)$ が (MHD) の解とする. もし, $p \in H^1(\Omega)$ ならば, $p \in H^2(\Omega)$.

証明は、Stokes の定理、Gauss の発散定理、(超函数の) 楕円型正則性定理に基づく.

References

- [1] P. R. Garabedian: *Partial Differential Equations*, John Wiley & Sons, Inc. (1964).
- [2] T. Kobayashi, T. Suzuki and K. Watanabe: *Interface Vanishing for Solutions to Maxwell and Stokes Systems*, J. Math. Fluid Mech. **7** (2005), pp.1–16.