Heat asymptotics for Dirichlet elliptic operators with non-smooth coefficients

Yoichi Miyazaki (School of Dentistry, Nihon University)

Let us consider a 2mth-order strongly elliptic operator in divergence form

$$Au(x) = \sum_{|\alpha| \le m, \, |\beta| \le m} D^{\alpha}(a_{\alpha\beta}(x)D^{\beta}u(x)) \tag{1}$$

defined in a domain Ω of \mathbb{R}^n , and assume that $a_{\alpha\beta}(x) = \overline{a_{\beta\alpha}(x)} \in L_{\infty}(\mathbb{R}^n)$. We denote by $A_{L_2(\Omega)}$ the self-adjoint operator in $L_2(\Omega)$ associated with A and the Dirichlet boundary conditions.

When Ω is a bounded domain, the spectrum of $A_{L_2(\Omega)}$ is descrete. Let λ_j $(j = 1, 2, \cdots)$ be the eigenvalues of $A_{L_2(\Omega)}$, and $\varphi_j(x)$ the corresponding normalized eigenfunction. Under the restricted smoothness conditions on the coefficients and the boundary of Ω , we consider the asymptotic behavior of the following functions at x = y as $\lambda \to \infty$, or as $t \to +0$:

- the counting function $N(\lambda) = \sum_{\lambda_i \leq \lambda} 1$.
- the spectral function $e(\lambda, x, y) =$ Kernel of the spectral projector $E(\lambda)$ of $A_{L_2(\Omega)}$. $e(\lambda, x, x) = \sum_{\lambda_j \leq \lambda} |\varphi_j(x)|^2$ if Ω is bounded.
- the partition function $U(t) = \text{Trace of } e^{-tA_{L_2(\Omega)}} = \sum_{j=1}^{\infty} e^{-t\lambda_j}$.
- $U(t, x, y) = \text{Kernel of the semigroup } \exp(-tA_{L_2(\Omega)}).$ $U(t, x, x) = \sum_{j=1}^{\infty} e^{-t\lambda_j} |\varphi_j(x)|^2 \text{ if } \Omega \text{ is bounded.}$

We note that the relations

$$N(\lambda) = \int_{\Omega} e(\lambda, x, x) \, dx,$$
$$U(t) = \int_{-\infty}^{\infty} e^{-t\lambda} \, dN(\lambda) = \int_{\Omega} U(t, x, x) \, dx,$$
$$U(t, x, x) = \int_{-\infty}^{\infty} e^{-t\lambda} \, d_{\lambda} e(\lambda, x, x)$$

hold.

For $\rho > 0$ the space $C_L^{\rho}(\Omega)$ is defined by $C_L^{\rho}(\Omega) = C^{\rho_0,\rho_1}(\Omega)$ if ρ is written as $\rho = \rho_0 + \rho_1$ with $\rho_0 \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ and $0 < \rho_1 \le 1$. We assume that there exists $\sigma > 0$ such that

$$a_{\alpha\beta} \in C_L^{\sigma-2m+|\alpha|+|\beta|}(\mathbb{R}^n) \quad \text{for } |\alpha|+|\beta| > 2m-\sigma.$$

Let

$$\delta(x) = \operatorname{dist}(x, \partial \Omega).$$

Theorem 1 ([4]). Let $0 < \sigma \leq 1$, and let Ω be a C^1 bounded domain. Then for any $\theta \in (0, \sigma)$

$$e(\lambda^{2m}, x, x) = c_A(x)\lambda^n + O(\lambda^{n-\theta} + \delta(x)^{-1}\lambda^{n-1})$$
(2)

as $\lambda \to \infty$, where O-estimate is uniform with respect to $x \in \Omega$, and $c_A(x) = (2\pi)^{-n} \int_{a_0(x,\xi) < 1} d\xi$. Here $a_0(x,\xi)$ denotes the principal symbol of A.

In addition,

$$N(\lambda^{2m}) = c_{A,\Omega}\lambda^n + O(\lambda^{n-\theta})$$
(3)

as $\lambda \to \infty$, where $c_{A,\Omega} = (2\pi)^{-n} \int_{\Omega} dx \int_{a_0(x,\xi) < 1} d\xi$.

Remark 2. Zielinski [8] obtained (3) when 2m > n.

In order to characterize the coefficients in the asymptotic formula of U(t, x, x) for the case of $\Omega = \mathbb{R}^n$ or $\Omega = \mathbb{R}^n$, we set

$$\mathbf{a}_0 = (a_{\alpha\beta})_{(\alpha,\beta)\in I_0}, \quad \mathbf{a}_1 = (a_{\alpha\beta}^{(\gamma)})_{(\alpha,\beta,\gamma)\in I_1}$$

with $I_0 = \{(\alpha, \beta) : |\alpha| = |\beta| = m\}$ and $I_1 = \{(\alpha, \beta, \gamma) : |\alpha| \le m, |\beta| \le m, \gamma \in \mathbb{N}_0^n\}.$

Definition 3. For $j \in \mathbb{N}_0$ we say that a polynomial $F(\mathbf{a}_1)$ has weight j if $F(\mathbf{a}_1)$ is written as

$$\sum const \times a_{\alpha^1\beta^1}^{(\gamma^1)} \cdots a_{\alpha^k\beta^k}^{(\gamma^k)},$$

where the sum is finite and $(\alpha^l, \beta^l, \gamma^l) \in I_1$ with $1 \leq l \leq k$ satisfy

$$\sum_{l=1}^{k} (2m - |\alpha^{l}| - |\beta^{l}| + |\gamma^{l}|) = j.$$

We also say that a constant has weight 0. The set of polynomials of weight j is denoted by \mathcal{P}_j .

We write $x \in \mathbb{R}^n_+$ as $x = (x', x_n)$ with $x_n > 0$.

Theorem 4 ([5]). Let $\Omega = \mathbb{R}^n$. Then there exist functions $b_j(x) \in C_L^{\sigma-j}(\mathbb{R}^n)$ with $j \in \mathbb{N}_0$, $0 \leq j < \sigma$ such that

$$U(t^{2m}, x, x) = \sum_{0 \le j < \sigma} b_j(x) t^{j-n} + O(t^{\sigma-n}) \quad as \ t \to +0,$$

where the O-estimate is uniform with respect to x.

Furthermore, the function $b_j(x)$ is written as the sum of terms of the form $F(\mathbf{a}_1(x))B(\mathbf{a}_0(x))$, where $F \in \mathcal{P}_j$ and B is a C^{∞} function of \mathbf{a}_0 in a suitable open set O_A . In particular,

$$b_0(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \exp(-a_0(x,\xi)) \, d\xi.$$
(4)

Theorem 5 ([5]). Let $\Omega = \mathbb{R}^n_+$. Then there exist functions $b_j(x) \in C_L^{\sigma-j}(\mathbb{R}^n)$ and $w_j(x',s)$ with $j \in \mathbb{N}_0$, $0 \le j < \sigma$ such that $w_j(x',s)$ is Hölder continuous of exponent $\sigma - j$ in $x' \in \mathbb{R}^{n-1}$ and of class C^{∞} in s > 0 and that

$$U(t^{2m}, x, x) = \sum_{0 \le j < \sigma} b_j(x) t^{j-n} - \sum_{0 \le j < \sigma} w_j(x', t^{-1}x_n) t^{j-n} + O(t^{\sigma-n}) \quad \text{as } t \to +0,$$

where the O-estimate is uniform with respect to x.

Furthermore, $b_j(x)$ is the same as in Theorem 4, and the function $w_j(x',s)$ is written as the sum of terms of the form $F(\mathbf{a}_1(x',0))W(\mathbf{a}_0(x',0),s)$, where $F \in \mathcal{P}_j$ and W is a C^{∞} function of (\mathbf{a}_0,s) in $O_A \times \mathbb{R}_+$ satisfying the following properties:

- (i) There exist $C = C(n, m, \sigma, A) > 0$ and $c = c(n, m, \sigma, A) > 0$ such that $|W(\mathbf{a}_0, s)| \le C \exp(-cs^{m_0})$ with $m_0 = 2m/(2m-1)$;
- (ii) For $l \in \mathbb{N}$, $\int_0^\infty s^{l-1} W(\mathbf{a}_0, s) \, ds$ is a C^∞ function of \mathbf{a}_0 in O_A and there exists $C = C(n, m, \sigma, l, A) > 0$ such that $\int_0^\infty s^{l-1} |W(\mathbf{a}_0, s)| \, ds \leq C$.

Theorem 6 ([5]). Assume that Ω is a bounded domain with $C_L^{\sigma+1}$ boundary. Then there exist constants c_j with $0 \leq j < \sigma$, $j \in \mathbb{N}_0$ such that

$$U(t^{2m}) = \sum_{0 \le j < \sigma} c_j t^{j-n} + O(t^{\sigma-n}) \quad as \ t \to +0.$$
(5)

In particular, $c_0 = \int_{\Omega} b_0(x) dx$ with $b_0(x)$ given in (4).

If $0 < \sigma \leq 1$, we can weaken the smoothness assumption on the boundary.

Theorem 7 ([5]). Let $0 < \sigma \leq 1$ and assume that Ω is a bounded domain with C^1 boundary. Then there exists a constant $c = c(n, m, A, \Omega) > 0$ such that

$$U(t^{2m}, x, x) = b_0(x)t^{-n} + O(t^{\sigma-n} + t^{-n}\exp[-c(t^{-1}\delta(x))^{m_0}]) \quad as \ t \to +0$$
(6)

with $b_0(x)$ given in (4), where the O-estimate is uniform with respect to x. Furthermore,

$$U(t^{2m}) = c_0 t^{-n} + O(t^{\sigma - n}) \quad as \ t \to +0.$$
(7)

Remark 8. Mizohata and Arima [6] obtained (6) with $\sigma = 1$ in the C^{∞} settings under general boundary conditions.

We would like to emphasize that the assumption 2m > n is not required. Our main tool to derive the above results is the L_p theory for divergence-form elliptic operators developed in [2, 3]. In order to prove Theorems 4, 5 we approximate A by an operator A^{ε} which has C^{∞} coefficients and construct a parametrix for $\exp(-t(A^{\varepsilon})_{L_2(\Omega)})$ more elaborately than Greiner [1] (see also [7]) did.

References

- P. Greiner, An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal. 41 (1971), 163–218.
- [2] Y. Miyazaki, The L^p theory of divergence form elliptic operators under the Dirichlet condition, J. Differential Equations **215** (2005), 320–356.
- [3] Y. Miyazaki, Higher order elliptic operators of divergence form in C¹ or Lipschitz domains, J. Differential Equations 230 (2006), 174–195.
- [4] Y. Miyazaki, Spectral asymptotics for Dirichlet elliptic operators with non-smooth coefficients, Osaka J. Math. 46 (2009), 441–460.
- [5] Y. Miyazaki, Heat asymptotics for Dirichlet elliptic operators with non-smooth coefficients, Asymptotic Analysis, 72 (2011), 125–167.
- [6] S. Mizohata and R. Arima, Propriétés asymptotiques des valeurs propres des opérateurs elliptiques auto-adjoints, J. Math. Kyoto Univ. 4 (1964), 245–254.
- [7] S. Ozawa, 熱方程式の基本解のトレースの漸近展開 有界領域の場合 , Reports on global analysis III (Geometry of the Laplace operator), edited by Kotake (1981), O1-O175.
- [8] L. Zielinski, Asymptotic distribution of eigenvalues for elliptic boundary value problems, Asymptot. Anal. 16 (1998), 181–201.