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Abstract

We show an upper bound of the life span of positive solutions of a semilinear heat
equation for non-decaying initial data. The bound is expressed by the limit inferior of
the data at space infinity around a specific direction. We also show that the minimal
time blow-up occurs when initial data attains its maximum at space infinity.

We study the life span of positive solutions of the Cauchy problem for a semilinear
heat equation 

∂u

∂t
= ∆u+ F (u), (x, t) ∈ Rn × (0,∞),

u(x, 0) = ϕ(x) ≥ 0, x ∈ Rn,
(1)

where n ≥ 2. Let ϕ be a bounded continuous function on Rn. Throughout this talk, we
assume that F (u) satisfies

F (u) ≥ up for u ≥ 0, (2)

with p > 1.
In this talk, we show a upper bound on the life span of positive solutions of equation

(1) for non-decaying initial data. We define the life span (or blow up time) T ∗ as

T ∗ = sup{T > 0 | (1) possesses a unique classical solution in Rn × [0, T )}. (3)

In the case F (u) = up, results in [2, 7, 8, 17] are summarized as follows:
(i) Let p ∈ (1, 1 + 2/n]. Then every nontrivial solution of the equation (1) blows up in
finite time.
(ii) Let p ∈ (1 + 2/n,∞). Then the equation (1) has a time-global classical solution for
some initial data ϕ.

Especially for non-decaying initial data, it was shown that the solution of the equation
(1) blows up in finite time for any p > 1. This result was proved in [9, 11].

Recently, several studies have been made on the life span of solutions for (1). See [1,
3-6, 9-19], and references therein. Gui and Wang [6] proved the following results when
initial data takes the form ϕ(x) = λψ(x).
(i) limλ→∞ T ∗ · λp−1 = 1

p−1∥ψ∥
1−p
L∞(Rn).

(ii) If lim|x|→∞ ψ(x) = k, then limλ→0 T
∗ · λp−1 = 1

p−1k
1−p.

The purpose of this talk is to give a upper bound of the life-span of the solution for
the equation (1) with initial data having positive inferior limit at space infinity.
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In order to state main results, we prepare several notations. For ξ′ ∈ Sn−1, and
δ ∈ (0,

√
2), we set neighborhood Sξ′(δ):

Sξ′(δ) :=
{
η′ ∈ Sn−1;

∣∣η′ − ξ′
∣∣ < δ

}
.

Define

M∞ := sup
ξ′∈Sn−1,δ>0

{
ess.inf

x′∈Sξ′ (δ)

(
lim inf
r→+∞

ϕ(rx′)
)}

.

Now, we state a main result.

Theorem 1. Let n ≥ 2. Assume that M∞ > 0. Then the classical solution for (1) blows
up in finite time, and the blow up time is estimated as follows:

T ∗ ≤ 1
p− 1

M1−p
∞ .

Once we admit Theorem 1, we can prove the following corollary immediately.

Corollary 1. Let n ≥ 2. Suppose that M∞ = ∥ϕ∥L∞(Rn). Then the minimal time blow
up occurs i.e.,

T ∗ =
1

p− 1
∥ϕ∥1−p

L∞(Rn).

In order to prove Theorem 1, we prepare the sequence {wj(t)}. For ξ′ ∈ Sn−1 and
δ > 0, we first determine the sequences {aj} ⊂ Rn and {Rj} ⊂ (0,∞). Let {aj} ⊂ Rn be
a sequence satisfying that |aj | → ∞ as j → ∞, and that aj/|aj | = ξ′ for any j ∈ N. Put
Rj = (δ

√
4 − δ2/2)|aj |. For Rj > 0, let ρRj be the first eigenfunction of −∆ on BRj (0) =

{x ∈ Rn; |x| < Rj} with zero Dirichlet boundary condition under the normalization∫
BRj

(0) ρRj (x)dx = 1. Moreover, let µRj be the corresponding first eigenvalue. For the

solutions for (1), define

wj(t) :=
∫

BRj
(0)
u(x+ aj , t)ρRj (x)dx.

Now we introduce the following two lemmas.

Lemma 1. The blow up time of wj is estimated from above as follows:

T ∗
wj

≤
log
(
1 − µRjw

1−p
j (0)

)
−(p− 1)µRj

for large j.

Lemma 2. (i) We have

lim inf
j→+∞

wj(0) ≥ ess.inf
x′∈Sξ′ (δ)

ϕ∞(x′).

(ii) We have

lim
j→+∞

log
(
1 − µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

= 1.
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From the definition of wj(t), T ∗ ≤ T ∗
wj

holds for large j. Using the lemmas 1 and 2,
we obtain

T ∗ ≤ lim sup
j+→∞

T ∗
wj

≤ lim sup
j+→∞

log
(
1 − µRjw

1−p
j (0)

)
−(p− 1)µRj

=
1

p− 1
lim

j→+∞

log
(
1 − µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

·
(

lim inf
j→+∞

wj(0)
)1−p

≤ 1
p− 1

(
ess.inf

x′∈Sξ′ (δ)
ϕ∞(x′)

)1−p

≤ 1
p− 1

M1−p
∞ .
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