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Abstract

We show an upper bound of the life span of positive solutions of a semilinear heat
equation for non-decaying initial data. The bound is expressed by the limit inferior of
the data at space infinity around a specific direction. We also show that the minimal
time blow-up occurs when initial data attains its maximum at space infinity.

We study the life span of positive solutions of the Cauchy problem for a semilinear
heat equation

?;: = Au+t F(u), (z,t) € R" x (0, 00),

u(z,0) = ¢(z) =20, zeR",

(1)

where n > 2. Let ¢ be a bounded continuous function on R"™. Throughout this talk, we
assume that F'(u) satisfies

F(u) >u? foru >0, (2)

with p > 1.
In this talk, we show a upper bound on the life span of positive solutions of equation
(1) for non-decaying initial data. We define the life span (or blow up time) 7™ as

T* =sup{T > 0| (1) possesses a unique classical solution in R" x [0,T")}. (3)

In the case F(u) = uP, results in [2, 7, 8, 17] are summarized as follows:

(i) Let p € (1,14 2/n]. Then every nontrivial solution of the equation (1) blows up in
finite time.

(ii) Let p € (1 +2/n,00). Then the equation (1) has a time-global classical solution for
some initial data ¢.

Especially for non-decaying initial data, it was shown that the solution of the equation
(1) blows up in finite time for any p > 1. This result was proved in [9, 11].

Recently, several studies have been made on the life span of solutions for (1). See [1,
3-6, 9-19], and references therein. Gui and Wang [6] proved the following results when
initial data takes the form ¢(z) = \)(z).

(i) limyoo T - AP~ = ,%WH;QP(RTL)-
(ii) If limyy o0 ¥(x) = k, then limy_o T* - XP71 = L k1P,

The purpose of this talk is to give a upper bound of the life-span of the solution for
the equation (1) with initial data having positive inferior limit at space infinity.



In order to state main results, we prepare several notations. For & € S"! and
§ € (0,v/2), we set neighborhood S (4):

55/(5) = {7’]/ S Snil;

n — 5" < 6} .
Define

My = su ess.inf ([ liminf ¢(ra’ .
o g/egn—ll)’5>0 {x’esg/(é) <7"H+oo ¢( )> }

Now, we state a main result.

Theorem 1. Let n > 2. Assume that My, > 0. Then the classical solution for (1) blows
up in finite time, and the blow up time is estimated as follows:

1
T < —MLP,

Once we admit Theorem 1, we can prove the following corollary immediately.

Corollary 1. Let n > 2. Suppose that My = ||¢||zoowny. Then the minimal time blow
Uup occurs i.e.,

1 -
* p
T* = 16l a0y

In order to prove Theorem 1, we prepare the sequence {w;(t)}. For ¢ € S*~! and
d > 0, we first determine the sequences {a;} C R™ and {R;} C (0,00). Let {a;} C R" be
a sequence satisfying that |a;| — co as j — oo, and that a;/|aj| = £ for any j € N. Put
Rj = (0vV4 — 6%/2)|aj|. For R; >0, let pg; be the first eigenfunction of —A on Bg,(0) =
{x € R™; |z| < R;} with zero Dirichlet boundary condition under the normalization
fBRj (0) PR (r)dz = 1. Moreover, let ug, be the corresponding first eigenvalue. For the

solutions for (1), define
wj(t) == / u(x + aj,t)pr,; (z)dx.
Br;(0)

Now we introduce the following two lemmas.
Lemma 1. The blow up time of w; is estimated from above as follows:

log (1 - jurw} #(0))
—(p—pr;

Ty, <
for large j.
Lemma 2. (i) We have

liminf w;(0) > inf doo ().
lim infuw;(0) 2 eseind) Po(a’)

(ii) We have

log (1~ pr,w) (0))
lim

j—+oo — L=p 0 =1
Nijj ( )



From the definition of w;(t), T < Tj)j holds for large j. Using the lemmas 1 and 2,
we obtain

T* <limsup Ty,

j—o0
log (1~ pryw) (0))
< lim sup
o0 —(p— 1Dur,
1 - log (1 - uij;_p(0)> o 1—p
= lim - - ( lim inf w; (0)
p—1j—teo —pr;w; " (0) j—+oo
1 o
< — .Anf !
S0 (f,g%g%d) Poo(T ))
<L
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