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1 Introduction

Let Q be a bounded domain of RY with smooth boundary 9. This talk is concerned with the
Cauchy-Dirichlet problem for nonlinear diffusion equations of the form

Ou = Apyu+ f in Q x (0,00), (1)

u=0 on 99 x (0, 00), (2)

u(-,0) = ug in €, (3)

where 0y = 0/0t, f = f(x,t) and ug = up(z) are given and A, is the so-called p(-)-Laplacian (or

p(x)-Laplacian) given by
Apyo(@) i= V- (Vo (@)D 2V o(a) )

with a variable exponent p(-) : © — (1, 00).

Notation for variable exponents.

e p~ :=ess igzlfp(x) and p* := esssup p(z) for variable exponents p(-) :  — [1,00).
z€e zeQ)

e P(Q):={peM(Q):1<p <p" <oo}.
e P°(Q):={p(") eP(N):1<p <p" < oo}.

, L
o Pl i= {p € PO): o) = (o) < (oo

Here M(2) denotes the set of all (Lebesgue) measurable functions from 2 to R.

Vo, 2’ € Q}

2 Variable exponent Lebesgue and Sobolev spaces

In this section, we summarize the definition and several properties of variable exponent Lebesgue and
Sobolev spaces, and we refer the reader to a recently published book [4] for a good summary in this
field. Variable exponent Lebesgue and Sobolev spaces are defined by

LPO(Q) = {u e M(Q): /Q lu(z)|P® da < oo},

Wir0)(Q) = {u e 1PO(Q): 9, u e LPO(Q) for i=1,2,... ,N}

p(z)
der <13,

with Luxemburg-type norms

[ullpy = llull oo () = inf {)\ >0: /Q

1/2
llirroay = (lull + IVal,)
If p(-) € P°(Q), then LPO)(Q) and W'P()(Q) are uniformly convex. Moreover, it holds that

u(x)

x
A

o ([wllyy) < /Q w(@)PPde < ot (Jwllye) Yw e LPD(Q)

with the strictly increasing functions
o~ (s) :=min{s? ,s"" }, ot (s):=max{s" ,s" } fors>0.

If p(-) € Piog(), then CF(RY) is dense in W'P()(RY), and moreover, Poincaré inequalities and
Sobolev embedding theorems hold.
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Well-posedness

In order to discuss the well-posedness of (1)—(3) without assuming p(-) € Plog(£2), we introduce the
following amalgam spaces:

XPO(Q) = {u € L*(Q): du/dz; € LPO(Q) fori=1,2,... ,N}

equipped with the norm

1/2 .
lullnoray = (lullf + IVal2,)) " for ue x70(@)

Moreover, set a subspace of XP()(Q) by

X30(Q) = XPO@Q) nwy P ()

Wlth H’LLHX(])J(.)(Q) = ||u||Xp<.>(Q).

Moreover, we define a functional @,y : L?(Q) — [0, 0] by

1 .
/Q M\Vw(xﬂp(‘”)da: if we X2V (),
o0 otherwise.

Pp(y(w) =

Then we can prove

Lemma 1 (p.Ls.c. of ¢, ()

Assume p(-) € P°(2). Then ¢, is proper (i.e., p,.) # o0), lower semicontinuous and convex

(p.ls.c. for short) in L2(Q).

Then (1)—(3) is reduced into the Cauchy problem of an evolution equation,

du

7 (B T 09y (u(t)) = f(t) in L2(Q),  u(0) = uo.

Here 0y, (.) denotes the subdifferential of ¢,.) and it is defined by

Opp(y(u) == {€ € L2(Q): pn() (V) = p, () (w) = (§,v —u)p2 Vv € LQ(Q)}.

From a general theory, we have

K Theorem 2 (Well-posedness)

N

Let p(-) € P°(Q), f € L2 ([0,00); L?(2)) and assume that 1 < p~ and p* < oo.

loc

e For ug € L?(12), the Cauchy-Dirichlet problem (1)—(3) admits a unique solution u = u(x,t) €
O((0,00); X5 (<),

o If ug € X2V(Q), then u € WL2(0, T; L2(Q)) N C([0, T]; X2 (Q)) for any T > 0.
e The unique solution u continuously depends on initial data ug,
||U1(t) — UQ(t)HQ < HUO,l - ’U/O72||2 for all ¢ > 0,

where u; is a unique solution of (1)—(3) for the initial data ug; (¢ = 1,2).

~
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Fast /slow diffusion limit

Let p,(-) be a sequence in P°(Q2) such that

pn(z) — 00 for ae. x € Q.



In this section, we discuss the limiting behavior as n — oo of the solutions u, = u,(z,t) for

Oy, = Apn()un +f in Qx (O,T), (5)
Up =0 on 90 x (0,T), (6)
un(-,0) = ugp in Q (7)

with a constant 7" > 0 and initial data ugp, — wuo in a proper sense. Here we pay attention to the
Mosco convergence as n — oo of ¢, (., which is given as in (4), under an appropriate assumption and
a limit functional

0 if wekK,

oo else

oo(w) = I (w) = {

with K := {w € H}(Q): |[Vw|loc < 1}. Then the limiting problem is written as the following varia-
tional inequality:

/ (f(x,t) — Ou(z,t)) (v(x) —u(z,t))de <0 for ae. t € (0,T) and all v € K,
Q

u(,t) € K fora.e. t € (0,7),
u(-,0) =up in Q.

More precisely, we obtain

Proposition 3 (Mosco convergence of ¢, (.))

Assume that ~
p; —oo and (PP =1 as n— oco.

Then ¢, () = ¥ On L?(Q) in the sense of Mosco as n — 00.

By using a general theory of structural stability of evolution equations with Mosco-convergent
functionals (see [3]), one can prove

/ Theorem 4 (Convergence of solutions) ~

In addition to the same assumption, assume that
uon — up € K strongly in L?(Q) and Ppn () (U0n) — 0.

Then solutions u, of (5)—(7) converge strongly in W12(0, T; L(€)) to a solution of the variational
inequality above.
J

We finally give a definition of Mosco convergence. Let H be a Hilbert space and denote effective
domain by

D(¢):={ue€ H: ¢(u) < oo}

for ¢ : H — (—o00, 00| proper, lower semicontinuous and convex (p.l.s.c.).

-~ Definition 5 (Mosco convergence) ~

Let ¢, and ¢ be p.l.s.c. on H. We say ¢, — ¢ on H in the sense of Mosco as n — oo, if the
following conditions are all satisfied:

(i) For all u € D(¢), there exists u, € D(¢y) such that u, — u strongly in H and ¢y, (u,) —
¢(u).
(i) If u, — u weakly in H, then liminf ¢y, (u,) > ¢(u).
n—oo
N J




5 Partial fast/slow diffusion limit

We next treat partially divergent exponents of the form,

as n — 0o,

gn(z) — 00 if z € D,
pn(z) = . -
q(z) < 00 if € Q\D

where D is a non-empty open subset of Q satisfying Q\ D # 0, g, € P°(D) and q € P°(2\ D). Here
we introduce a functional ¢p : L2(Q) — [0, 00] given by

/ Lva(x)w@c)dx if weW,? (Q), we X1(Q\D),
O\D q(z)
ep(w) == and || Vwl|pepy < 1,

%) otherwise

as a limit of ¢, (). Our result is state in the following, where we write

q' =esssupgq,(r) and g, = essinf g, ().
€D zeD

Proposition 6 (Mosco convergence of ¢, ()

Assume that -
q; oo and (¢gHY%" -1 as n— oo

Then ¢,y — ¢p on L*() in the sense of Mosco as n — oc.

From the Mosco convergence of ¢, (), solutions u, converge to u strongly in W12(0,T; L*((2))
and the limit u solves

W)+ dgp(u(t)) > f(1) i (), u(0) = uo.

We further characterize the limiting problem above as follows:

e Properties of u(t) at each t:
u(t) € Wyt (), u(t) € XIO(Q\D), |[Vu(t)|pepy <1 forae. te(0,T).

e A parabolic equation in Q\ D:
du—Aygu=f in 2'(Q\D) and t>0.

e A variational inequality in D:
/ (f(z,t) = Opu(z,t))(2(z) —u(z,t))de <0 Vze Kp(u(t)),
D
where the set Kp(w) is given for each w € Wol’q_ (Q) by

Kp(w) := {z ceWh>®(D): z —w € WOI’( (D) and [[Vz||feopy < 1}.
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