Variational Inequalities for a System of Elliptic－Parabolic Equations

山崎 教昭 ${ }^{1}$（神奈川大学 工学部）

§1 Introduction

This is a joint work with Masahiro KUBO^{2} and Ken SHIRAKAWA ${ }^{3}$ ．
In this talk，we consider the following vector－valued elliptic－parabolic variational in－ equality with time－dependent constraint，denoted by $(\mathrm{P})_{m}(m \geq 1)$ ：
Problem（P）$)_{m}$ ．

$$
\begin{gathered}
\boldsymbol{u}(t) \in \boldsymbol{K}(t), \quad 0<t<T, \\
\left(\frac{d}{d t} \boldsymbol{b}(\boldsymbol{u}(t)), \boldsymbol{u}(t)-\boldsymbol{z}\right)_{\boldsymbol{H}}+\int_{\Omega} \boldsymbol{a}(x, \boldsymbol{b}(\boldsymbol{u}(t)), \nabla \boldsymbol{u}(t)) \cdot \nabla(\boldsymbol{u}(t)-\boldsymbol{z}) d x \leq(\boldsymbol{f}(t), \boldsymbol{u}(t)-\boldsymbol{z})_{\boldsymbol{H}} \\
\text { for all } \boldsymbol{z} \in \boldsymbol{K}(t) \text { and } t \in(0, T), \\
\boldsymbol{b}(\boldsymbol{u}(0))=\boldsymbol{b}_{0} \quad \text { in } \Omega .
\end{gathered}
$$

Here，$m \geq 1$ is a positive integer， $\boldsymbol{u}=\left(u_{1}, \cdots, u_{m}\right)$ and $\boldsymbol{b}(\boldsymbol{u})=\left(b_{1}(\boldsymbol{u}), \cdots, b_{m}(\boldsymbol{u})\right)$ ． Also，T is a fixed finite time，Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ with a smooth boundary，$(\cdot, \cdot)_{\boldsymbol{H}}$ is the usual inner product in $\boldsymbol{H}:=\left[L^{2}(\Omega)\right]^{m}$ ，the constraint $\boldsymbol{K}(t)$ is a time－dependent convex set in $\boldsymbol{V}:=\left[H^{1}(\Omega)\right]^{m}, \boldsymbol{f}$ is a given function in $W^{1,2}(0, T ; \boldsymbol{H})$ ， and $\boldsymbol{b}_{0} \in \boldsymbol{H}$ is a given initial value．For the quasilinear elliptic vector field $\boldsymbol{a}(x, s, p)$ and the nonlinear term \boldsymbol{b} ，we assume structural conditions．In particular，we assume $\boldsymbol{a}(x, s, p)=\partial_{p} A(x, s, p)$ and $\boldsymbol{b}=\partial B$ for potential functions $A: \Omega \times \mathbb{R}^{m} \times\left(\mathbb{R}^{N}\right)^{m} \rightarrow \mathbb{R}$ and $B: \mathbb{R}^{m} \rightarrow \mathbb{R}$ ，respectively．

In the case when $\boldsymbol{a}(x, s, p)$ is strictly elliptic in p ，the system $(\mathrm{P})_{m}$ was studied by Alt－Luckhaus［2］for the Dirichlet－Neumann boundary condition，namely，the constraint $\boldsymbol{K}(t)$ is given by

$$
\boldsymbol{K}(t)=\left\{\boldsymbol{z} \in \boldsymbol{V} ; \boldsymbol{z}=\boldsymbol{p}(t) \text { on } \Gamma_{D}\right\},
$$

where Γ_{D} is a part of the boundary of Ω and \boldsymbol{p} is given boundary data on Γ_{D} ．
For $m=1$ ，there is already a vast literature（cf．Kubo－Yamazaki［6］and the references therein）．However，the case $m>1$ seems to have been studied less extensively so far．

The main aim of this talk is to study the system $(\mathrm{P})_{m}(m \geq 1)$ with a general time－ dependent convex constraint imposed by $\boldsymbol{K}(t)$ ．In fact，we establish a solvability theorem concerning the existence of solutions to $(\mathrm{P})_{m}$ by employing an improved version of the method from Kubo－Yamazaki［6］．

[^0]
§2 Main Theorem

Now, we assume the following conditions.
(A1) $A: \Omega \times \mathbb{R}^{m} \times\left(\mathbb{R}^{N}\right)^{m} \rightarrow \mathbb{R}$ is a \mathcal{C}^{1}-class function such that $\boldsymbol{a}(x, s, p)=\partial_{p} A(x, s, p)$,

$$
\begin{gathered}
\boldsymbol{a}(x, \cdot, \cdot): \mathbb{R}^{m} \times\left(\mathbb{R}^{N}\right)^{m} \rightarrow\left(\mathbb{R}^{N}\right)^{m} \text { is continuous for a.e. } x \in \Omega, \\
\boldsymbol{a}(\cdot, s, p): \Omega \rightarrow\left(\mathbb{R}^{N}\right)^{m} \text { is measurable for any } s \in \mathbb{R}^{m}, p \in\left(\mathbb{R}^{N}\right)^{m}, \\
A(x, \cdot, \cdot): \mathbb{R}^{m} \times\left(\mathbb{R}^{N}\right)^{m} \rightarrow \mathbb{R} \text { is continuous for a.e. } x \in \Omega, \\
A(\cdot, s, p): \Omega \rightarrow \mathbb{R} \text { is measurable for any } s \in \mathbb{R}^{m}, p \in\left(\mathbb{R}^{N}\right)^{m}, \\
A(x, s, \cdot):\left(\mathbb{R}^{N}\right)^{m} \rightarrow \mathbb{R} \text { is convex for any } x \in \Omega, s \in \mathbb{R}^{m} .
\end{gathered}
$$

Moreover, there exist constants $C_{1}>0$ and $C_{2}>0$ such that

$$
\begin{gathered}
|\boldsymbol{a}(x, s, p)|^{2}+|A(x, s, p)|+\left|\partial_{s} A(x, s, p)\right|^{2} \leq C_{1}\left(1+|s|^{2}+|p|^{2}\right), \\
A(x, s, p) \geq C_{2}|p|^{2}
\end{gathered}
$$

for all $x \in \Omega, s \in \mathbb{R}^{m}$ and $p \in\left(\mathbb{R}^{N}\right)^{m}$.
(A2) $B: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a \mathcal{C}^{1}-class convex function such that $\boldsymbol{b}=\partial B$ is Lipschitz continuous.
(A3) $\boldsymbol{f} \in W^{1,2}(0, T ; \boldsymbol{H})$ and $\boldsymbol{K}(t)$ is a non-empty, closed, convex set in \boldsymbol{V} for all $t \in$ $[0, T]$. Also, $\boldsymbol{b}_{0}=\boldsymbol{b}\left(\boldsymbol{u}_{0}\right)$ for some $\boldsymbol{u}_{0} \in \boldsymbol{K}(0)$.
(A4) There is a function $\alpha \in W^{1,2}(0, T)$ satisfying the following property: for any $s, t \in$ $[0, T], \boldsymbol{w} \in \boldsymbol{H}$ and $\boldsymbol{z} \in \boldsymbol{K}(s)$, there exists $\widetilde{\boldsymbol{z}} \in \boldsymbol{K}(t)$ such that

$$
\begin{gathered}
|\widetilde{\boldsymbol{z}}-\boldsymbol{z}|_{\boldsymbol{V}} \leq|\alpha(t)-\alpha(s)|\left(1+|\boldsymbol{z}|_{\boldsymbol{V}}\right) \\
\int_{\Omega} A(x, \boldsymbol{w}, \nabla \widetilde{\boldsymbol{z}}) d x-\int_{\Omega} A(x, \boldsymbol{w}, \nabla \boldsymbol{z}) d x \leq|\alpha(t)-\alpha(s)|\left(1+|\boldsymbol{z}|_{\boldsymbol{V}}^{2}+|\boldsymbol{w}|_{\boldsymbol{H}}|\boldsymbol{z}|_{\boldsymbol{V}}+|\boldsymbol{w}|_{\boldsymbol{H}}\right) .
\end{gathered}
$$

(A5) There is a constant $C_{3}>0$ such that

$$
|\boldsymbol{z}|_{\boldsymbol{V}} \leq C_{3}\left(1+|\nabla \boldsymbol{z}|_{\boldsymbol{H}}\right) \quad \text { for all } \boldsymbol{z} \in \boldsymbol{K}(t) \text { and } t \in[0, T] .
$$

We now mention the main theorem concerning the existence of solutions to $(\mathrm{P})_{m}$ ($m \geq 1$).
Main Theorem. Assume (A1)-(A5) are satisfied. Then, there is at least one solution $\boldsymbol{u}:[0, T] \rightarrow \boldsymbol{V}$ to $(\mathrm{P})_{m}$ such that $\boldsymbol{u} \in L^{\infty}(0, T ; \boldsymbol{V})$ and $\boldsymbol{b}(\boldsymbol{u}) \in W^{1,2}(0, T ; \boldsymbol{H})$.

§3 Application to a regularization system of oil and water problem

In this section we give an application of Main Theorem.
Now, we consider the following regularization system of oil and water problem:

Problem (P1).

$$
\begin{gathered}
s_{i}\left(u_{1}-u_{2}\right)_{t}-\nabla \cdot\left(\nabla u_{i}+k_{i}\left(s_{1}\left(u_{1}-u_{2}\right)\right) \boldsymbol{e}_{i}\right)=f_{i}(t, x) \quad \text { in }(0, T) \times \Omega, \\
s_{1}+s_{2}=1 \quad \text { in }(0, T) \times \Omega, \\
\text { and } \quad\left(u_{i}-p_{i}\right) \nu \cdot\left(\nabla u_{i}+k_{i}\left(s_{1}\left(u_{1}-u_{2}\right)\right) \boldsymbol{e}_{i}\right)=0 \quad \text { on }(0, T) \times \Gamma_{i, S}, \\
u_{i}=p_{i} \quad \text { on }(0, T) \times \Gamma_{i, D}, \\
\nu \cdot\left(\nabla u_{i}+k_{i}\left(s_{1}\left(u_{1}-u_{2}\right)\right) \boldsymbol{e}_{i}\right)=0 \quad \text { on }(0, T) \times \Gamma_{i, N}, \\
s_{i}\left(u_{1}(0)-u_{2}(0)\right)=b_{i, 0} \quad \text { in } \Omega
\end{gathered}
$$

for $i=1,2$, where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ having Lipschitz boundary when $N>1, \boldsymbol{e}_{i}$ is a vector in x_{N}-direction, ν is the outward normal vector on the boundary, and the functions $p_{i}, b_{i, 0}$ are given $(i=1,2)$. Also, the boundary Γ of Ω admits the mutually disjoint decomposition

$$
\Gamma=\Gamma_{i, S} \cup \Gamma_{i, D} \cup \Gamma_{i, N}, \quad(i=1,2),
$$

where $\Gamma_{i, S}, \Gamma_{i, D}$ and $\Gamma_{i, N}$ are \mathscr{H}^{N-1}-measurable subsets of Γ, and $\Gamma_{i, D}$ has positive $\mathscr{H}^{N-1}{ }_{-}$ measure ($i=1,2$).

In physical applications, Ω is the porous medium, the indices 1 and 2 relate to the single fluids: water and oil. Also, s_{i} stands for the saturation, u_{i} is the hydrostatic pressure, and k_{i} is the hydraulic conductivity (cf. [1, 3, 4]).

Here, we assume that
(K1) $\boldsymbol{p}=\left(p_{1}, p_{2}\right) \in W^{1,2}(0, T ; \boldsymbol{V})$ and $\boldsymbol{f}=\left(f_{1}, f_{2}\right) \in W^{1,2}(0, T ; \boldsymbol{H})$.
(K2) $s_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing and Lipschitz continuous function.
(K3) $k_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded and Lipschitz continuous function $(i=1,2)$.
We easily see that (P1) can be reformulated to Problem (P) $)_{2}$. In fact, for each $t \in[0, T]$ we define a convex set $\boldsymbol{K}_{1}(t)$ in \boldsymbol{V} by

$$
\boldsymbol{K}_{1}(t):=\left\{\begin{array}{c|c}
\boldsymbol{z}=\left(z_{1}, z_{2}\right) \in \boldsymbol{V} & \begin{array}{c}
z_{i} \leq p_{i}(t) \text { on } \Gamma_{i, S} \text { and } z_{i}=p_{i}(t) \text { on } \Gamma_{i, D} \\
\text { for } i=1,2
\end{array}
\end{array}\right\}
$$

Here, we put $\boldsymbol{u}:=\left(u_{1}, u_{2}\right)$ and $\boldsymbol{b}(\boldsymbol{u}):=\left(s_{1}\left(u_{1}-u_{2}\right), 1-s_{1}\left(u_{1}-u_{2}\right)\right)$ in \boldsymbol{H}. Clearly, we have

$$
\boldsymbol{b}(\boldsymbol{u})^{\prime}=\left(s_{1}\left(u_{1}-u_{2}\right)^{\prime},\left(1-s_{1}\left(u_{1}-u_{2}\right)\right)^{\prime}\right)=\left(s_{1}\left(u_{1}-u_{2}\right)^{\prime}, s_{2}\left(u_{1}-u_{2}\right)^{\prime}\right) \quad \text { in } \boldsymbol{H}
$$

Also, we define

$$
\boldsymbol{a}(x, \boldsymbol{w}, \nabla \boldsymbol{u}(t)):=\left(\nabla u_{1}+k_{1}\left(w_{1}\right) \boldsymbol{e}_{1}, \nabla u_{2}+k_{2}\left(w_{1}\right) \boldsymbol{e}_{2}\right) \quad \text { for } \boldsymbol{w}=\left(w_{1}, w_{2}\right) \in \mathbb{R}^{2} .
$$

Then, we easily observe that Problem $(\mathrm{P})_{2}$ with $\boldsymbol{K}(t)=\boldsymbol{K}_{1}(t)$ is the weak variational formulation of (P1).

Now, we show (A1). To do so, we define

$$
A(x, \boldsymbol{w}, \boldsymbol{v}):=\sum_{i=1}^{2}\left[\frac{1}{2} \boldsymbol{v}_{i}+k_{i}\left(w_{1}\right) \boldsymbol{e}_{i}\right] \cdot \boldsymbol{v}_{i}+C_{A}
$$

for all $x \in \Omega, \boldsymbol{w}=\left(w_{1}, w_{2}\right) \in \mathbb{R}^{2}$ and $\boldsymbol{v}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$, where C_{A} is a positive constant so that

$$
A(x, \boldsymbol{w}, \boldsymbol{v}) \geq \frac{1}{4}|\boldsymbol{v}|^{2} .
$$

Then, we easily observe from (K3) that the assumption (A1) holds.
Next, we show (A2). Now, we define

$$
B(\boldsymbol{u})=\int_{0}^{u_{1}-u_{2}} s_{1}(\rho) d \rho+u_{2}
$$

Then, we easily observe from (K2) that $B: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{1}-class convex function satisfying $\boldsymbol{b}=\partial B$. Therefore, the assumption (A2) holds.

Also, the assumption (A4) is verified by (K1), (K3) and by putting $\widetilde{\boldsymbol{z}}:=\boldsymbol{z}-\boldsymbol{p}(s)+\boldsymbol{p}(t)$ for $\boldsymbol{z} \in \boldsymbol{K}_{1}(s)$. Condition (A5) is easily checked by noting that $\Gamma_{i, D}$ has positive \mathscr{H}^{N-1} measure $(i=1,2)$ and by using the Poincaré inequality. Hence, if $\boldsymbol{u}_{0}=\left(u_{1,0}, u_{2,0}\right) \in \boldsymbol{K}_{1}(0)$ and $\boldsymbol{b}_{0}=\left(b_{1,0}, b_{2,0}\right)=\left(s_{1}\left(u_{1,0}-u_{2,0}\right), 1-s_{1}\left(u_{1,0}-u_{2,0}\right)\right)$, we can apply Main Theorem to Problem (P1). Thus, we get the existence of solutions to (P1).

References

[1] H. W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12(1985), 335-392.
[2] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 311-341 (1983).
[3] D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, J. Differential Equations, 55(1984), 276-288.
[4] S. N. Kružkov and S. M. Sukorjanskií, Boundary value problems for systems of equations of two-phase filtration type; formulation of problems, questions of solvability, justification of approximate methods, (Russian) Mat. Sb. (N.S.), 104(146)(1977), 69-88, 175-176.
[5] M. Kubo, K. Shirakawa and N. Yamazaki, Variational inequalities for a system of elliptic-parabolic equations, J. Math. Anal. Appl., 387(2012), 490-511.
[6] M. Kubo and N. Yamazaki, Elliptic-parabolic variational inequalities with timedependent constraints, Discrete Contin. Dyn. Syst., 19(2007), 335-359.

[^0]: ${ }^{1}$ Department of Mathematics，Faculty of Engineering，Kanagawa University，3－27－1 Rokkakubashi， Kanagawa－ku，Yokohama，221－8686，Japan．E－mail：noriaki＠kanagawa－u．ac．jp
 ${ }^{2}$ Department of Mathematics，Nagoya Institute of Technology，Gokiso－cho，Showa－ku，Nagoya，466－ 8555，Japan．E－mail：kubo．masahiro＠nitech．ac．jp
 ${ }^{3}$ Department of Mathematics，Faculty of Education，Chiba University，1－33 Yayoi－cho，Inage－ku， Chiba，263－8522，Japan．E－mail：sirakawa＠faculty．chiba－u．jp

