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§1 Introduction
This is a joint work with Masahiro KUBO2 and Ken SHIRAKAWA3.
In this talk, we consider the following vector-valued elliptic-parabolic variational in-

equality with time-dependent constraint, denoted by (P)m (m ≥ 1):

Problem (P)m.
u(t) ∈ K(t), 0 < t < T,(

d

dt
b(u(t)), u(t) − z

)
H

+

∫
Ω

a(x, b(u(t)),∇u(t)) · ∇(u(t) − z) dx ≤ (f(t), u(t) − z)H

for all z ∈ K(t) and t ∈ (0, T ),

b(u(0)) = b0 in Ω.

Here, m ≥ 1 is a positive integer, u = (u1, · · · , um) and b(u) = (b1(u), · · · , bm(u)).
Also, T is a fixed finite time, Ω is a bounded domain in RN (N ≥ 1) with a smooth
boundary, (·, ·)H is the usual inner product in H :=[L2(Ω)]m, the constraint K(t) is a
time-dependent convex set in V := [H1(Ω)]m, f is a given function in W 1,2(0, T ; H),
and b0 ∈ H is a given initial value. For the quasilinear elliptic vector field a(x, s, p)
and the nonlinear term b, we assume structural conditions. In particular, we assume
a(x, s, p) = ∂pA(x, s, p) and b = ∂B for potential functions A : Ω × Rm ×

(
RN

)m → R
and B : Rm → R, respectively.

In the case when a(x, s, p) is strictly elliptic in p, the system (P)m was studied by
Alt–Luckhaus [2] for the Dirichlet-Neumann boundary condition, namely, the constraint
K(t) is given by

K(t) = {z ∈ V ; z = p(t) on ΓD},

where ΓD is a part of the boundary of Ω and p is given boundary data on ΓD.
For m = 1, there is already a vast literature (cf. Kubo-Yamazaki [6] and the references

therein). However, the case m > 1 seems to have been studied less extensively so far.
The main aim of this talk is to study the system (P)m (m ≥ 1) with a general time-

dependent convex constraint imposed by K(t). In fact, we establish a solvability theorem
concerning the existence of solutions to (P)m by employing an improved version of the
method from Kubo–Yamazaki [6].
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§2 Main Theorem
Now, we assume the following conditions.

(A1) A : Ω×Rm ×
(
RN

)m → R is a C1-class function such that a(x, s, p) = ∂pA(x, s, p),

a(x, ·, ·) : Rm ×
(
RN

)m →
(
RN

)m
is continuous for a.e. x ∈ Ω,

a(·, s, p) : Ω →
(
RN

)m
is measurable for any s ∈ Rm, p ∈

(
RN

)m
,

A(x, ·, ·) : Rm ×
(
RN

)m → R is continuous for a.e. x ∈ Ω,

A(·, s, p) : Ω → R is measurable for any s ∈ Rm, p ∈
(
RN

)m
,

A(x, s, ·) :
(
RN

)m → R is convex for any x ∈ Ω, s ∈ Rm.

Moreover, there exist constants C1 > 0 and C2 > 0 such that

|a(x, s, p)|2 + |A(x, s, p)| + |∂sA(x, s, p)|2 ≤ C1(1 + |s|2 + |p|2),

A(x, s, p) ≥ C2|p|2

for all x ∈ Ω, s ∈ Rm and p ∈
(
RN

)m
.

(A2) B : Rm → R is a C1-class convex function such that b = ∂B is Lipschitz continuous.

(A3) f ∈ W 1,2(0, T ; H) and K(t) is a non-empty, closed, convex set in V for all t ∈
[0, T ]. Also, b0 = b(u0) for some u0 ∈ K(0).

(A4) There is a function α ∈ W 1,2(0, T ) satisfying the following property: for any s, t ∈
[0, T ], w ∈ H and z ∈ K(s), there exists z̃ ∈ K(t) such that

|z̃ − z|V ≤ |α(t) − α(s)|(1 + |z|V ),∫
Ω

A(x, w,∇z̃) dx−
∫

Ω

A(x, w,∇z) dx ≤ |α(t)−α(s)|(1+ |z|2V + |w|H |z|V + |w|H).

(A5) There is a constant C3 > 0 such that

|z|V ≤ C3(1 + |∇z|H) for all z ∈ K(t) and t ∈ [0, T ].

We now mention the main theorem concerning the existence of solutions to (P)m

(m ≥ 1).

Main Theorem. Assume (A1)–(A5) are satisfied. Then, there is at least one solution
u : [0, T ] → V to (P)m such that u ∈ L∞(0, T ; V ) and b(u) ∈ W 1,2(0, T ; H).

§3 Application to a regularization system of oil and water problem
In this section we give an application of Main Theorem.
Now, we consider the following regularization system of oil and water problem:
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Problem (P1).

si(u1 − u2)t −∇ · (∇ui + ki(s1(u1 − u2))ei) = fi(t, x) in (0, T ) × Ω,

s1 + s2 = 1 in (0, T ) × Ω,

ui ≤ pi, ν · (∇ui + ki(s1(u1 − u2))ei) ≤ 0

and (ui − pi)ν · (∇ui + ki(s1(u1 − u2))ei) = 0 on (0, T ) × Γi,S,

ui = pi on (0, T ) × Γi,D,

ν · (∇ui + ki(s1(u1 − u2))ei) = 0 on (0, T ) × Γi,N ,

si(u1(0) − u2(0)) = bi,0 in Ω

for i = 1, 2, where Ω is a bounded domain in RN (N ≥ 1) having Lipschitz boundary when
N > 1, ei is a vector in xN -direction, ν is the outward normal vector on the boundary,
and the functions pi, bi,0 are given (i = 1, 2). Also, the boundary Γ of Ω admits the
mutually disjoint decomposition

Γ = Γi,S ∪ Γi,D ∪ Γi,N , (i = 1, 2),

where Γi,S, Γi,D and Γi,N are H N−1-measurable subsets of Γ, and Γi,D has positive H N−1-
measure (i = 1, 2).

In physical applications, Ω is the porous medium, the indices 1 and 2 relate to the
single fluids: water and oil. Also, si stands for the saturation, ui is the hydrostatic
pressure, and ki is the hydraulic conductivity (cf. [1, 3, 4]).

Here, we assume that

(K1) p = (p1, p2) ∈ W 1,2(0, T ; V ) and f = (f1, f2) ∈ W 1,2(0, T ; H).

(K2) s1 : R → R is a nondecreasing and Lipschitz continuous function.

(K3) ki : R → R is a bounded and Lipschitz continuous function (i = 1, 2).

We easily see that (P1) can be reformulated to Problem (P)2. In fact, for each t ∈ [0, T ]
we define a convex set K1(t) in V by

K1(t) :=

{
z = (z1, z2) ∈ V

∣∣∣∣ zi ≤ pi(t) on Γi,S and zi = pi(t) on Γi,D

for i = 1, 2

}
.

Here, we put u := (u1, u2) and b(u) := (s1(u1 − u2), 1 − s1(u1 − u2)) in H . Clearly,
we have

b(u)′ = (s1(u1 − u2)
′, (1 − s1(u1 − u2))

′) = (s1(u1 − u2)
′, s2(u1 − u2)

′) in H .

Also, we define

a(x, w,∇u(t)) := (∇u1 + k1(w1)e1,∇u2 + k2(w1)e2) for w = (w1, w2) ∈ R2.
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Then, we easily observe that Problem (P)2 with K(t) = K1(t) is the weak variational
formulation of (P1).

Now, we show (A1). To do so, we define

A(x, w, v) :=
2∑

i=1

[
1

2
vi + ki(w1)ei

]
· vi + CA

for all x ∈ Ω, w = (w1, w2) ∈ R2 and v = (v1,v2) ∈ RN × RN , where CA is a positive
constant so that

A(x, w,v) ≥ 1

4
|v|2.

Then, we easily observe from (K3) that the assumption (A1) holds.
Next, we show (A2). Now, we define

B(u) =

∫ u1−u2

0

s1(ρ)dρ + u2.

Then, we easily observe from (K2) that B : R2 → R is a C1-class convex function satisfying
b = ∂B. Therefore, the assumption (A2) holds.

Also, the assumption (A4) is verified by (K1), (K3) and by putting z̃ := z−p(s)+p(t)
for z ∈ K1(s). Condition (A5) is easily checked by noting that Γi,D has positive H N−1-
measure (i = 1, 2) and by using the Poincaré inequality. Hence, if u0 = (u1,0, u2,0) ∈ K1(0)
and b0 = (b1,0, b2,0) = (s1(u1,0 − u2,0), 1 − s1(u1,0 − u2,0)), we can apply Main Theorem to
Problem (P1). Thus, we get the existence of solutions to (P1).
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