Variational Inequalities for a System of
Elliptic-Parabolic Equations
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81 Introduction

This is a joint work with Masahiro KUBO? and Ken SHIRAKAWAS3,

In this talk, we consider the following vector-valued elliptic-parabolic variational in-
equality with time-dependent constraint, denoted by (P),, (m > 1):

Problem (P),,.
u(t) € K(t), 0<t<T,

+ / a(z,blu(t)), Vu(t) - V(u(t) - 2)dz < (F(1), u(t) = 2)y
Q

for all z € K(t) and t € (0,7),
b(u(0)) =by in Q.

Here, m > 1 is a positive integer, u = (u1,- - ,uy) and b(u) = (bi(u), - ,bn(u)).
Also, T is a fixed finite time,  is a bounded domain in RY (N > 1) with a smooth
boundary, (-,-)g is the usual inner product in H :=[L?(Q2)]™, the constraint K(t) is a
time-dependent convex set in V' := [H'(Q)]™, f is a given function in W'%(0,T; H),
and by € H is a given initial value. For the quasilinear elliptic vector field a(z,s,p)
and the nonlinear term b, we assume structural conditions. In particular, we assume
a(z,s,p) = O,A(z,s,p) and b = 9B for potential functions A : Q@ x R™ x (RV)™ — R
and B : R™ — R, respectively.

In the case when a(z,s,p) is strictly elliptic in p, the system (P),, was studied by
Alt—Luckhaus [2] for the Dirichlet-Neumann boundary condition, namely, the constraint
K (t) is given by

K(t)={ze€V ; z=p(t) onlp},

where I'p is a part of the boundary of €2 and p is given boundary data on I'p.
For m = 1, there is already a vast literature (cf. Kubo-Yamazaki [6] and the references
therein). However, the case m > 1 seems to have been studied less extensively so far.
The main aim of this talk is to study the system (P),, (m > 1) with a general time-
dependent convex constraint imposed by K (). In fact, we establish a solvability theorem
concerning the existence of solutions to (P),, by employing an improved version of the
method from Kubo—Yamazaki [6].
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82 Main Theorem
Now, we assume the following conditions.

(A1) A: QxR™x (RY)™ — R is a C'-class function such that a(z, s,p) = d,A(z, s, p),
a(z,- ) R™ x (]RN)m — (]RN)m is continuous for a.e. x € €2,

a(-,s,p): Q— (]RN)m is measurable for any s € R™, p € (RN)m,
Az, ) R™ x (RN)m — R is continuous for a.e. z € (Q,
A(+,s,p) - © — R is measurable for any s € R™, p € (RN)m,
Az, s, ) : (]RN)m — R is convex for any x € 2, s € R™.
Moreover, there exist constants C; > 0 and Cy > 0 such that
la(x, s,p)|* + |A(z, s,p)| + 10:A(z, s,p)[* < C1(1+[s]* + [p]*),
Az, s,p) = Calp|”
forallz € Q, s € R™ and p € (RV)™.
(A2) B:R™ — RisaC'-class convex function such that b = 9B is Lipschitz continuous.

(A3) f € WH%(0,T; H) and K (t) is a non-empty, closed, convex set in V for all ¢t €
[0,T]. Also, by = b(uy) for some uy € K(0).

(A4) There is a function a € W2(0, T) satisfying the following property: for any s,t €
0,7], w € H and z € K (s), there exists z € K (t) such that

2 = zlv <la(t) = a(s)|[(1 + |z|v),
/A(x,'w,vg) dw—/A(x,’w,Vz) dz < |a(t) —a(s)|(1+|z]3 +|wle|z|v +|w| ).
0 Q

(A5) There is a constant Cs > 0 such that

|zly < C5(1+ |Vz|g) forall ze€ K(t) and t € [0,T].

We now mention the main theorem concerning the existence of solutions to (P),,
(m>1).

Main Theorem. Assume (Al)—(Ab) are satisfied. Then, there is at least one solution
uw:[0,7] — V to (P),, such that w € L>*(0,T; V) and b(u) € W'?(0,T; H).

83 Application to a regularization system of oil and water problem
In this section we give an application of Main Theorem.
Now, we consider the following regularization system of oil and water problem:



Problem (P1).
SZ'<U1 — Ug)t -V (Vul —+ ki(sl(ul — u2))ei) = fl(t, l’) n (O,T) X Q,

s1+s2=1 in (0,7) x Q,
u; < pi, v (Vug + ki(s1(ug — uz))e;) <0
and (wi — pi)v - (Vu; + ki(s1(ug — ug))e;) =0 on (0,7) x I'; g,
u; = p; on (0,7) xI'; p,
v (Vu; + ki(s1(u; —uz))e;) =0 on (0,7) x I'; v,
si(u1(0) —ug(0)) = bip in Q

for i = 1,2, where Q is a bounded domain in RY (N > 1) having Lipschitz boundary when
N > 1, e; is a vector in xy-direction, v is the outward normal vector on the boundary,
and the functions p;, b;o are given (i = 1,2). Also, the boundary I' of Q admits the
mutually disjoint decomposition

F:Fi,SUFi,DUI‘LN, (Z: ]_,2),

where I'; 5, I'; p and I'; v are ' N~1_measurable subsets of I, and I'; p has positive SN
measure (i = 1,2).

In physical applications, €) is the porous medium, the indices 1 and 2 relate to the
single fluids: water and oil. Also, s; stands for the saturation, u; is the hydrostatic
pressure, and k; is the hydraulic conductivity (cf. [1, 3, 4]).

Here, we assume that

(Kl) P = (pl,pg) S Wl’Q(O,T; V) and f = (fl, f2) S Wl’Q(O,T; H)
(K2) s : R — R is a nondecreasing and Lipschitz continuous function.

(K3) k; : R — R is a bounded and Lipschitz continuous function (i = 1, 2).

We easily see that (P1) can be reformulated to Problem (P)s. In fact, for each ¢ € [0, T
we define a convex set K(t) in V by

K (t):= {z = (21,2) €V z < pi(t)on I'; g and z; = p;(t) on I'; p } |

fori=1,2

Here, we put w := (u1,us) and b(u) := (s1(u1 — uz2),1 — s1(uy — ug)) in H. Clearly,
we have

b(u) = (s1(ug —uz)’, (1 — s1(ug — uz))) = (s1(ug — uz)’, s2(ug — uz)’) in H.
Also, we define

a(z,w,Vu(t)) := (Vuy + ki(wy)er, Vug + ka(wy)es)  for w = (wy,wy) € R%



Then, we easily observe that Problem (P), with K (t) = K;(t) is the weak variational
formulation of (P1).
Now, we show (A1l). To do so, we define

2
1
A([L’,w, ’U) = Z |:§’UZ + k,(wl)el} -v; + CA

=1

for all z € Q, w = (wy,ws) € R? and v = (vy,v5) € RY x RY where Cj is a positive
constant so that

1
Alz,w,v) > Z|v|2.
Then, we easily observe from (K3) that the assumption (A1) holds.
Next, we show (A2). Now, we define

B(u) :/0 51(p)dp + s,

Then, we easily observe from (K2) that B : R? — R is a C'-class convex function satisfying
b = 0B. Therefore, the assumption (A2) holds.

Also, the assumption (A4) is verified by (K1), (K3) and by putting z := z—p(s)+p(¢)
for z € K(s). Condition (A5) is easily checked by noting that T'; p has positive SV ~1-
measure (7 = 1,2) and by using the Poincaré inequality. Hence, if wg = (u1,0, us0) € K1(0)
and by = (b1,0,b20) = (s1(u1,0 — u20), 1 — s1(u1,0 — u2yp)), we can apply Main Theorem to
Problem (P1). Thus, we get the existence of solutions to (P1).
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