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We consider the Cauchy problem of the system of Schrödinger equations:

(SS)


(i∂t + α∆)u = −(∇ · w)v, t > 0, x ∈ Rd

(i∂t + β∆)v = −(∇ · w)u, t > 0, x ∈ Rd

(i∂t + γ∆)w = ∇(u · v), t > 0, x ∈ Rd

(u, v, w)|t=0 = (u0, v0, w0) ∈ Hs(Rd)×Hs(Rd)×Hs(Rd)

.

Where α, β, γ ̸= 0 and unknown functions u, v, w are Cd value. System (SS) is intro-
duced by M.Colin and T.Colin([1]) as a model of laser-plasma interaction. M.Colin and
T.Colin([1]) also proved the local existence of (SS) for s > d/2 + 3. Our purpose is to
improve their result and to prove the well-posedness of (SS) in the scaling critical Sobolev
space.

System (SS) is invariant under the following scaling transformation:

Aλ(t, x) = λ−1A(λ−2t, λ−1x) (A = (u, v, w)).

We note that

||Aλ(0, ·)||Ḣs = λd/2−1−s||A(0, ·)||Ḣs

and the scaling critical regularity of (SS) is s = sc := d/2− 1.
We put ϕ := (α− γ)(β + γ) and θ := αβγ(1/α− 1/β − 1/γ). Main results in this talk

are the following.

Theorem 1 (For the critical result). We assume ϕ ̸= 0.

(1) If d ≥ 4, then (SS) is globally well-posed for small data in Hsc.
(2) If d = 2, 3 and θ > 0, then (SS) is globally well-posed for small data in Hsc.

Theorem 2 (For the subcritical result). We assume ϕ ̸= 0.

(1) If d = 1 and θ > 0, then (SS) is locally well-posed in L2.
(2) If d = 1, 2, 3 and θ = 0, then (SS) is locally well-posed in H1.

(3) If d = 2, 3 and θ < 0, then (SS) is locally well-posed in H1/2+ϵ for any ϵ > 0.

(4) If d = 1 and θ < 0, then (SS) is locally well-posed in H1/2.

Theorem 3 (Negative result). Let d ≥ 1.

(1) If ϕ = 0, then flow map of (SS) is not C2 in Hs for any s ∈ R.
(2) If θ = 0, then flow map of (SS) is not C2 in Hs for any s < 1.
(3) If θ < 0, then flow map of (SS) is not C2 in Hs for any s < 1/2.

Remark 4. System (SS) has the following conservation quantities:

M(u, v, w) := 2||u||2L2
x
+ ||v||2L2

x
+ ||w||2L2

x
,

H(u, v, w) := α||∇u||2L2
x
+ β||∇v||2L2

x
+ γ||∇w||2L2

x
+ 2Re(w,∇(u · v))L2

x
.

By using the conservation law for M , we can extend the local L2 solution of Theorem 2
globally in time. Furthermore, if α, β and γ are same sign, then we can extend the local
H1 solution of Theorem 2 globally in time by using the conservation law for H.
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d = 1 d = 2, 3 d ≥ 4
ϕ ̸= 0 θ > 0 WP for s ≥ 0 WP for s ≥ sc WP for s ≥ sc

θ = 0 WP for s ≥ 1 & not C2 for s < 1
θ < 0 WP for s ≥ 1/2 WP for s > 1/2

& not C2 for s < 1/2 & not C2 for s < 1/2
ϕ = 0 not C2 for any s ∈ R

Table 1. Well-posedness (WP for short) for above the scaling critical regularity

The difficulty is that there is a derivative loss arising from the nonlinear terms. To
recover the derivative loss completely, we use the U2, V 2 type Bourgain spaces which are
applied to prove the well-posedness of KP-II equation in the scaling critical Sobolev space
by M.Hadac, S.Herr and H.Koch([2]).

To introduce the Up space and V p space, we define the set of finite partitions Z as

Z :=
{
{tk}Kk=0|K ∈ N,−∞ = t0 < t1 < · · · < tK = ∞

}
.

Definition 5 (Up space). Let 1 ≤ p < ∞. For {tk}Kk=0 ∈ Z and {ϕk}K−1
k=0 ⊂ L2 with∑K−1

k=0 ||ϕk||pL2 = 1 and ϕ0 = 0 we call the function a : R → L2 given by

a(t) =

K∑
k=1

1[tk−1,tk)(t)ϕk−1

a “Up-atom”. Furthermore, we define the atomic space

Up :=

u =
∞∑
j=1

λjaj in L∞(R;L2)

∣∣∣∣∣∣ aj : Up−atom, λj ∈ C such that
∞∑
j=1

|λj | < ∞


with norm

||u||Up := inf


∞∑
j=1

|λj |

∣∣∣∣∣∣u =
∞∑
j=1

λjaj , aj : U
p−atom, λj ∈ C

 .

Definition 6 (V p space). Let 1 ≤ p < ∞. We define the space of bounded p-variation

V p := {v : R → L2| lim
t→−∞

v(t) and lim
t→∞

v(t) exist, ||v||V p < ∞}

with norm

||v||V p := sup
{tk}Kk=0∈Z

(
K∑
k=1

||v(tk)− v(tk−1)||pL2

)1/p

,

where v(−∞) := limt→−∞ v(t) and v(∞) := 0. Likewise, let V p
−,rc denote the closed

subspace of all right-continuous functions v ∈ V p with limt→−∞ v(t) = 0.

Definition 7 (U2, V 2 type Bourgain spaces). Let s, σ ∈ R. We define the function space
Zs
σ as the closure of all u ∈ C(R;Hs(Rd)) ∩ U2

σ such that

||u||Zs
σ
:=

∑
N≥1

N2s||PNu||2U2
σ

1/2

< ∞

with respect to the || · ||Zs
σ
-norm. Where

Up
σ := {u : R → L2| e−itσ∆u ∈ Up}, ||u||Up

σ
:= ||e−itσ∆u||Up

and PN is (inhomogeneous) Littlewood-Paley decomposition operator with x. We also
define by Y s

σ corresponding space where U2 is replaced by V 2
−,rc.
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Key estimates to prove the critical result are the following.

Proposition 8 (Key estimates). We define

I
(1)
T,σ(f, g)(t) :=

∫ t

0
1[0,T )(t

′)ei(t−t′)σ∆(∇ · f(t′))g(t′)dt′,

I
(2)
T,σ(f, g)(t) :=

∫ t

0
1[0,T )(t

′)ei(t−t′)σ∆∇(f(t′) · g(t′))dt′

and assume (α− γ)(β + γ) ̸= 0

(1) If d ≥ 4, then for any 0 < T < ∞ we have

||I(1)T,α(w, v)||Zsc
α

. ||w||Y sc
γ
||v||Y sc

β
,

||I(1)T,β(w, u)||Zsc
β

. ||w||Y sc
γ
||u||Y sc

α
,

||I(2)T,γ(u, v)||Zsc
γ

. ||u||Y sc
α
||v||Y sc

β
.

(2) If d = 2, 3 and αβγ(1/α−1/β−1/γ) > 0, then for any 0 < T ≤ 1 above estimates
hold.

We will talk about the properties of Up, V p and the outline of the proof of Proposition 8.
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