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The KP-II equation

∂x(∂tu+ ∂3
xu+ 3∂x(u

2)) + 3σ∂2
yu = 0 for t > 0 and (x, y) ∈ R2 (KP)

is a 2-dimensional generalization of the KdV equation

∂tu+ ∂3
xu+ 3∂x(u

2) = 0 for t > 0 and x ∈ R. (1)

The KP equation takes slow variations in the transversal direction into account. If σ = 1,

then (KP) is called KP-II and it describes the motion of shallow water waves with weak

surface tension. Obviously, any solutions of (1) satisfy (KP).

The KdV equation has a two parameter family of solitary wave solutions

{φc(x− 2ct− γ) | c > 0 , γ ∈ R} , φc(x) = c sech2
(√ c

2
x
)
.

The KP-II equation is supposed to explain stability of these solitary wave solutions to the

transversal perturbations (see [7]). When φc(x − 2ct) is considered as a solution of the KP

equations, we call it a line soliton. In this talk, I will discuss stability of line soliton solutions

for the KP-II equation. The KP-II equation is known to be well-posed in L2(R2) on the

background of line solitons ([11]).

The KP equation (KP) is an integrable system as well as the KdV equation and have

conserved quantities such as ∫
R2

u(t, x, y)2 dxdy (momentum),

1

2

∫ (
u2x(t, x, y)− 3σ(∂−1

x ∂yu(t, x, y))
2 − 2u3(t, x, y)

)
dxdy (Hamiltonian).

For the KP-I equation, that is (KP) with σ = −1, the first two terms of the Hamiltonian have

the same sign and it was shown by [6, 14] that there exists a stable ground state for the KP-I

equation, whereas the KP-II equation has no traveling wave solutions that belong to L2(R2)

([5]).

On the other hand, it is known that the line solitons of the KP-I equation are unstable ([16])

and line solitons of the KP-II equation are linearly stable. Because the dominant quadratic

part of the Hamiltonian of the KP-II equation is indefinite, it is more natural to explain

stability of line solitons by using propagation estimates such as [13] rather than by using

variational arguments such as [3].

The main difference between stability analysis of the KdV 1-soliton or the stability of line

soliton with the y-periodic boundary condition is that φc(x−2ct) does not have the finite L2-

mass because it is not localized in the y-direction. As a consequence, the linearized operator of
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the KP-II equation around the line soliton has a family of continuous eigenvalues converging

to 0 (see e.g. [1, 2]) in exponentially weighted space, whereas 0 is an isolated eigenvalue of

the linearized KdV operator around a solitary wave in exponentially weighted space.

Since we have continuous spectrum converging to 0, the modulations of the speed and the

phase shift of line solitons for the KP-II equation cannot be described by ODEs as KdV ([13])

or the KP-II equation posed on Rx × Ry/(2πZ) ([10]).
I find that for the KP-II equation posed on R2, modulation of the speed parameter c(t, y)

and the phase shift x(t, y) cannot be uniform in y and their long time behavior is described

by the Burgers equation. Note that similar modulation equations have formally derived for a

two spatial dimensional Boussinesq model ([12]).

My results are the following ([9]).

Theorem 1 Let c0 > 0 and a ∈ (0,
√

c0/2). Then there exist positive constants ε0 and C

satisfying the following: if u(0, x, y) = φc0(x)+v0(x, y), v0 ∈ H1(R2) and ε := ∥eaxv0∥L2(R2)+

∥eaxv0∥L1
yL

2
x
+ ∥v0∥L2(R2) < ε0, then there exist C1-functions c(t, y) and x(t, y) such that for

t ≥ 0,

∥u(t, x, y)− φc(t,y)(x− x(t, y))∥L2(R2) ≤ Cε , (2)

sup
y∈R

(|c(t, y)− c0|+ |xy(t, y)|) ≤ Cε(1 + t)−1/2 , (3)

∥xt(t, ·)− 2c(t, ·)∥L2 ≤ Cε(1 + t)−3/4 , (4)∥∥eax(u(t, x+ x(t, y), y)− φc(t,y)(x))
∥∥
L2 ≤ Cε(1 + t)−3/4 . (5)

We find that c(t, y) and ∂yx(t, y) behave like a self-similar solution of the Burgers equation

around y = ±
√
8c0t.

Theorem 2 Let c0 = 2 and let v0 and ε be the same as in Theorem 1. Then for any R > 0,∥∥∥∥∥
(

c(t, ·)
xy(t, ·)

)
−

(
2 2

1 −1

)(
u+B(t, y + 4t)

u−B(t, y − 4t)

)∥∥∥∥∥
L2(|y±4t|≤R

√
t)

= o(t−1/4)

as t → ∞, where u±B are self similar solutions of the Burgers equation

∂tu = 2∂2
yu± 4∂y(u

2)

such that

u±B(t, y) =
±m±H2t(y)

2
(
1 +m±

∫ y
0 H2t(y1) dy1

) , Ht(y) = (4πt)−1/2e−y2/4t ,

and that m± are constants satisfying∫
R
u±B(t, y) dy =

1

4

∫
R
c(0, y) dy +O(ε2) .

The KP-II equation (KP) is invariant under a change of variables

x 7→ x+ ky − 3k2t+ γ and y 7→ y − 6kt for any k, γ ∈ R, (6)

and has a 3-parameter family of line soliton solutions

A = {φc(x+ ky − (2c+ 3k2)t+ γ) | c > 0 , k , γ ∈ R} .

Thanks to propagations of the local phase shifts along the crest of line solitons, the set A is

not stable in L2(R2).
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Theorem 3 Let c0 > 0. There exists a positive constant C such that for any ε > 0, there

exists a solution of (KP) such that ∥u(0, x, y)− φc0(x)∥L2 < ε and

lim inf
t→∞

t−1/4 inf
v∈A

∥u(t, x, y)− v∥L2(R2) ≥ Cε .

Similar problems have been studied for nonlinear heat equations ([15, 8]) and also for kink
solutions to a wave equation ([4]). However, we need some correction of the phase shift for
the KP-II equation, which does not appear in these former results because the transversal
dimension and the power of nonlinear terms are higher than our problem.
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