Stability of line solitons for KP-II
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The KP-II equation
D2 (Opu 4 O3u + 30, (u?)) + 308§u =0 fort>0and (z,y) € R? (KP)
is a 2-dimensional generalization of the KdV equation
O+ u+ 30,(u®) =0 for t > 0 and z € R. (1)

The KP equation takes slow variations in the transversal direction into account. If o = 1,
then (KP) is called KP-II and it describes the motion of shallow water waves with weak
surface tension. Obviously, any solutions of (1) satisfy (KP).

The KdV equation has a two parameter family of solitary wave solutions

{pc(x —2ct —7) | c>0,y€ R}, @(z)= csech? (\/§x> )

The KP-II equation is supposed to explain stability of these solitary wave solutions to the
transversal perturbations (see [7]). When ¢.(z — 2ct) is considered as a solution of the KP
equations, we call it a line soliton. In this talk, I will discuss stability of line soliton solutions
for the KP-II equation. The KP-II equation is known to be well-posed in L?(R?) on the
background of line solitons ([11]).

The KP equation (KP) is an integrable system as well as the KdV equation and have
conserved quantities such as

/u(tjx,y)deL’dy (momentum),
R2

;/ (W2 (t,z,y) — 30(8, ' Oyu(t, z,y))? — 2u*(t,z,y)) dedy (Hamiltonian).

For the KP-I equation, that is (KP) with o = —1, the first two terms of the Hamiltonian have
the same sign and it was shown by [6, 14] that there exists a stable ground state for the KP-I
equation, whereas the KP-II equation has no traveling wave solutions that belong to L?(R?)
(I5))-

On the other hand, it is known that the line solitons of the KP-I equation are unstable ([16])
and line solitons of the KP-II equation are linearly stable. Because the dominant quadratic
part of the Hamiltonian of the KP-II equation is indefinite, it is more natural to explain
stability of line solitons by using propagation estimates such as [13] rather than by using
variational arguments such as [3].

The main difference between stability analysis of the KAV 1-soliton or the stability of line
soliton with the y-periodic boundary condition is that ¢ (z — 2ct) does not have the finite L2-
mass because it is not localized in the y-direction. As a consequence, the linearized operator of



the KP-II equation around the line soliton has a family of continuous eigenvalues converging
to 0 (see e.g. [1, 2]) in exponentially weighted space, whereas 0 is an isolated eigenvalue of
the linearized KdV operator around a solitary wave in exponentially weighted space.

Since we have continuous spectrum converging to 0, the modulations of the speed and the
phase shift of line solitons for the KP-II equation cannot be described by ODEs as KdV ([13])
or the KP-II equation posed on R, x R, /(27Z) ([10]).

I find that for the KP-II equation posed on R?, modulation of the speed parameter c(t,y)
and the phase shift z(¢,y) cannot be uniform in y and their long time behavior is described
by the Burgers equation. Note that similar modulation equations have formally derived for a
two spatial dimensional Boussinesq model ([12]).

My results are the following ([9]).

Theorem 1 Let ¢y > 0 and a € (0,+/co/2). Then there exist positive constants g9 and C
satisfying the following: if u(0,z,y) = ¢, (z)+vo(x,y), vo € H(R?) and e := ||e™vol| f2(r2)+
e vollz1z2 + llvoll L2 w2y < €0, then there exist Cl-functions c(t,y) and x(t,y) such that for
£>0,

Hu(twray) = Pe(t,y) (.%' - $(t, y))HLQ(RQ) <Ce, (2)
Zlelﬂgﬂc(t,y) — col + |y (t,y)]) < Ce(1+8)71/2, 3)
22 (2, ) = 2¢(t, )| g2 < Ce(1+1)7%1, (4)
€% (u(t, x + (£, y), ) — Pe(ey) ()] o < Ce(1+1)73/%. (5)

We find that c(t,y) and dyz(t,y) behave like a self-similar solution of the Burgers equation
around y = =£+/8cot.

Theorem 2 Let ¢y = 2 and let vg and € be the same as in Theorem 1. Then for any R > 0,

(c(t, ~)> - (2 2 > <uj§(t,y+4t)>
xy(t, ) 1 1) \ug(t,y —4t)

as t — oo, where u% are self similar solutions of the Burgers equation

= o(t™'/*)
L2(|y=4 <RVT)

Ou = 28§u + 49, (u?)

such that
:l:m:tH2t(y)
2 (1+mx [ Hau(y1) dy1)

and that my are constants satisfying

[ty =7 [ c0pdy+ 0.

ub(t,y) = Hy(y) = (drt) =2 v /4

The KP-II equation (KP) is invariant under a change of variables
z—x+ky—3k*+~ and y~— y—6kt foranyk, veR, (6)
and has a 3-parameter family of line soliton solutions
A= {pc(x+ky— (2c+3k)t+7) | ¢>0, k,v€R}.

Thanks to propagations of the local phase shifts along the crest of line solitons, the set A is
not stable in L?(IR?).



Theorem 3 Let ¢g > 0. There exists a positive constant C' such that for any € > 0, there

exists a solution of (KP) such that ||[u(0,z,y) — @c, ()| 12 < € and

e 1/4
hgg}ft 1}25\ [u(t, ,y) — vl|lL2®2) = Ce.

Similar problems have been studied for nonlinear heat equations ([15, 8]) and also for kink
solutions to a wave equation ([4]). However, we need some correction of the phase shift for
the KP-II equation, which does not appear in these former results because the transversal
dimension and the power of nonlinear terms are higher than our problem.
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