Decomposition of the Möbius energy: Geometric meaning and analytic utility

Aya Ishizeki (Saitama University) Nagasawa Takeyuki (Saitama University)

1 Introduction

Let $\mathbf{f}: \mathbb{R}/\mathcal{L}\mathbb{Z} \ni s \mapsto \mathbf{f}(s) \in \mathbb{R}^n$ be a closed curve in \mathbb{R}^n with total length \mathcal{L} . s is an arc-length parameter. We denote the distance between $\mathbf{f}(s_1)$ and $\mathbf{f}(s_2)$ along the closed curve by $\mathscr{D}(\mathbf{f}(s_1), \mathbf{f}(s_2))$.

The Möbius energy \mathcal{M} is defined by

(1)
$$\mathcal{M}(\boldsymbol{f}) = \text{p.v.} \iint \left(\frac{1}{\|\boldsymbol{f}(s_1) - \boldsymbol{f}(s_2)\|_{\mathbb{R}^n}^2} - \frac{1}{\mathscr{D}(\boldsymbol{f}(s_1), \boldsymbol{f}(s_2))^2} \right) ds_1 ds_2,$$

where p.v. $\iint = \lim_{\varepsilon \to +0} \iint_{|s_1-s_2|>\varepsilon}$ is Cauchy's principal value.

Each term of the integrand in (1) is not integrable on $(\mathbb{R}/\mathcal{L}\mathbb{Z})^2$. The subtraction of two terms gains the integrability, and therefore it is not easy to find the proper domain of \mathcal{M} . In this talk, we give decomposition of \mathcal{M} into three parts \mathcal{M}_1 , \mathcal{M}_2 and the absolute constant 4. The first part \mathcal{M}_1 is a positive definite functional which implies the proper domain of \mathcal{M} . The second one \mathcal{M}_2 has the determinant structure which characterizes the cancellation of the integrand.

2 The decomposition of the Möbius energy

At a point where f is differentiable, we denote the unit tangent vector by τ . Similarly κ stands for the curvature vector at a point where f is twice differentiable.

Theorem 1 The energy $\mathcal{M}(f)$ is decomposed as

$$\mathcal{M}(oldsymbol{f}) = \iint_{(\mathbb{R}/\mathcal{L}\mathbb{Z})^2} \left(\mathscr{M}_1(oldsymbol{f}) + \mathscr{M}_2(oldsymbol{f})
ight) ds_1 ds_2 + 4,$$

where

$$\mathcal{M}_{1}(\boldsymbol{f}) = \frac{\|\boldsymbol{\tau}(s_{1}) - \boldsymbol{\tau}(s_{2})\|_{\mathbb{R}^{n}}^{2}}{2\|\boldsymbol{f}(s_{1}) - \boldsymbol{f}(s_{2})\|_{\mathbb{R}^{n}}^{2}},$$

$$\mathcal{M}_{2}(\boldsymbol{f}) = \frac{2}{\|\boldsymbol{f}(s_{1}) - \boldsymbol{f}(s_{2})\|_{\mathbb{R}^{n}}^{4}}$$

$$\times \det \begin{pmatrix} \boldsymbol{\tau}(s_{1}) \cdot \boldsymbol{\tau}(s_{2}) & (\boldsymbol{f}(s_{1}) - \boldsymbol{f}(s_{2})) \cdot \boldsymbol{\tau}(s_{1}) \\ (\boldsymbol{f}(s_{1}) - \boldsymbol{f}(s_{2})) \cdot \boldsymbol{\tau}(s_{2}) & \|\boldsymbol{f}(s_{1}) - \boldsymbol{f}(s_{2})\|_{\mathbb{R}^{n}}^{2} \end{pmatrix}.$$

We replace the Euclidean distance $\|\boldsymbol{f}(s_1) - \boldsymbol{f}(s_2)\|_{\mathbb{R}^n}$ in the denominator of $\mathcal{M}_1(\boldsymbol{f})$ by the distance $\mathcal{D}(\boldsymbol{f}(s_1), \boldsymbol{f}(s_2))$ along the curve. Its integration is

$$\iint_{(\mathbb{R}/\mathcal{L}\mathbb{Z})^2} \frac{\|\boldsymbol{\tau}(s_1) - \boldsymbol{\tau}(s_2)\|_{\mathbb{R}^n}^2}{2\mathscr{D}(\boldsymbol{f}(s_1), \boldsymbol{f}(s_2))^2} ds_1 ds_2 = \frac{1}{2} [\boldsymbol{\tau}]_{\frac{1}{2}, 2}^2,$$

where $[\cdot]_{\frac{1}{2}}$ is the intrinsic semi-norm of $H^{\frac{1}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Roughly speaking, $\mathcal{M}_1(\boldsymbol{f}) < \infty$ implies $\boldsymbol{\tau} \in H^{\frac{1}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$, *i.e.*, $\boldsymbol{f} \in H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. This is true if \boldsymbol{f} is bi-Lipschitz. It is known that $\mathcal{M}(\boldsymbol{f}) < \infty$ implies the bi-Lipschitz continuity.

Theorem 2 Suppose that f has no self-intersections.

1. Assume that \mathbf{f} is bi-Lipschitz and $\mathbf{f} \in H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Then we have $\mathscr{M}_i(\mathbf{f}) \in L^1((\mathbb{R}/\mathcal{L}\mathbb{Z})^2)$. In fact there exists a constant C depending on the bi-Lipschitz constant of \mathbf{f} such that

$$\|\mathscr{M}_i(\boldsymbol{f})\|_{L^1} \leq C [\boldsymbol{\tau}]_{\frac{1}{2},2}^2.$$

- 2. Suppose that $\mathbf{f} \in C^{1,1}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Then $\mathcal{M}_i(\mathbf{f}) \in L^{\infty}((\mathbb{R}/\mathcal{L}\mathbb{Z})^2)$ holds.
- 3. Let $\mathbf{f} \in C^2(\mathbb{R}/\mathcal{L}\mathbb{Z})$ and put $\mathcal{M}_i(\mathbf{f})(s,s) = \frac{(-1)^{i-1}}{2} \|\mathbf{\kappa}(s)\|_{\mathbb{R}^n}^2$. Then $\mathcal{M}_i(\mathbf{f}) \in C((\mathbb{R}/\mathcal{L}\mathbb{Z})^2)$ holds.

Since s is the arc-length parameter, we have $\|\boldsymbol{\tau}\|_{\mathbb{R}^n} = 1$. In the proof of the first statement we use this fact, i.e., $\boldsymbol{f} \in H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. As we see later the first variation of \mathcal{M}_i is a linear functional on $H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Consequently we conclude that the proper domain of \mathcal{M} is $H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. See [1].

3 The Möbius invariance

The energy \mathcal{M} is called the Möbius energy because it is invariant under the Möbius transformation. Surprisingly both \mathcal{M}_1 and \mathcal{M}_2 have the Möbius invariance.

Theorem 3 We put

$$\mathcal{M}_i(oldsymbol{f}) = \iint_{(\mathbb{R}/\mathcal{L}\mathbb{Z})^2} \mathscr{M}_i(oldsymbol{f}) ds_1 ds_2.$$

Both \mathcal{M}_1 and \mathcal{M}_2 are Möbius invariance in the following sense.

- 1. The energy is invariant under the dilation.
- 2. Let $\mathbf{f} \to \mathbf{p}$ be the inversion with respect to a circle with the center \mathbf{c} .
 - (1) $\mathcal{M}_1(\mathbf{f}) + \mathcal{M}_2(\mathbf{f}) = \mathcal{M}_1(\mathbf{p}) + \mathcal{M}_2(\mathbf{p})$ holds for $\mathbf{f} \in W^{1,1}(\mathbb{R}/2\pi\mathbb{Z})$, even if \mathbf{c} is on the closed curve \mathbf{f} .
 - (2) Assume that \mathbf{c} is not on \mathbf{f} . If $\mathcal{M}(\mathbf{f}) < \infty$, then $\mathcal{M}_1(\mathbf{f}) = \mathcal{M}_1(\mathbf{p})$ and $\mathcal{M}_2(\mathbf{f}) = \mathcal{M}_2(\mathbf{p})$ hold.

Remark 1 \mathcal{M}_2 is the same up to constant multiplication as the E_{OS} -energy which is introduced by O'Hara and Solanes [5] as a Möbius invariant energy. Theorem 3 shows the Möbius invariance of the E_{OS} -energy under a less regularity condition.

Let S^1 be a circle in \mathbb{R}^n . Then it is known that $\mathcal{M}(S^1) = 4$ and it is the minimum value of \mathcal{M} . This shows that $\mathcal{M}_1 + \mathcal{M}_2$ is a non-negative functional. In fact the energy density $\mathcal{M}_1 + \mathcal{M}_2$ is non-negative.

Theorem 4 (Non-negativity of the energy density) The sum of the density is non-negative. In fact it holds that

$$\begin{split} & \mathcal{M}_{1}(\boldsymbol{f}) + \mathcal{M}_{2}(\boldsymbol{f}) \\ & = \frac{1}{\|\boldsymbol{f}(s_{1}) - \boldsymbol{f}(s_{2})\|_{\mathbb{R}^{n}}^{2}} \\ & \times \left\{ \frac{1}{2} \|\boldsymbol{\tau}(s_{1}) + \boldsymbol{\tau}(s_{2})\|_{\mathbb{R}^{n}}^{2} \|\boldsymbol{\nu}_{*}\|_{\mathbb{R}^{n}}^{2} + (\boldsymbol{\nu}_{*} \cdot \boldsymbol{\tau}(s_{1}))^{2} + (\boldsymbol{\nu}_{*} \cdot \boldsymbol{\tau}(s_{2}))^{2} \right\} \geq 0, \end{split}$$

where

$$m{
u}_* = m{ au}_* - (m{ au}_* \cdot m{ au}_m) m{ au}_m, \quad m{ au}_* = rac{|s_1 - s_2| (m{f}(s_1) - m{f}(s_2))}{\|m{f}(s_1) - m{f}(s_2)\|_{\mathbb{R}^n} (s_1 - s_2)}$$

and the vector $\boldsymbol{\tau}_m = \boldsymbol{\tau}_m(s_1, s_2)$ is defined as follows. If $\boldsymbol{\tau}(s_1) + \boldsymbol{\tau}(s_2) \neq \boldsymbol{o}$, then we define

$$oldsymbol{ au}_m = rac{oldsymbol{ au}(s_1) + oldsymbol{ au}(s_2)}{\|oldsymbol{ au}(s_1) + oldsymbol{ au}(s_2)\|_{\mathbb{R}^n}}.$$

Otherwise τ_m is defined by any unit vector satisfying $\tau_m \cdot \tau(s_1) = 0$.

Corollary 1 Let \mathbf{f} be a closed curve. $\mathcal{M}(\mathbf{f}) = 4$ holds if and only if \mathbf{f} is a circle.

This is a known result, but we can give its analytic proof by using Theorem 4.

4 The first variational formula

The first variational formula of \mathcal{M} was calculated by [2, 3] using the integral p.v. \iint in Cauchy's principal value. The absolute integrability was shown in [4] in the class $C^{3+\alpha}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Using the decomposition of Theorem 1, we can show the corresponding result on the proper domain $H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$.

Let ϕ be a function from $\mathbb{R}/\mathcal{L}\mathbb{Z}$ to \mathbb{R}^n . The first variation of $\mathcal{M}_i(\mathbf{f})$ is defined by

$$\delta \mathcal{M}_i(m{f})[m{\phi}] = \left. rac{d}{darepsilon} \mathcal{M}_i(m{f} + arepsilon m{\phi})
ight|_{arepsilon = 0}.$$

Theorem 5 (First variational formula) Assume that f has no self-intersection and $\mathcal{M}(f) < \infty$ holds, which implies $f \in H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$ and bi-Lipschitz. Let G_i be the integrand of the first variational formula of \mathcal{M}_1 , i.e.,

$$\delta \mathcal{M}_i(oldsymbol{f})[oldsymbol{\phi}] = \iint_{(\mathbb{R}/\mathcal{L}\mathbb{Z})^2} G_i(s_1,s_2) ds_1 ds_2 \quad (i=1,2),$$

where $G_i ds_1 ds_2 = \delta \mathcal{M}_i(\mathbf{f}) ds_1 ds_2 + \mathcal{M}_i(\mathbf{f}) \{\delta(ds_1) ds_2 + ds_1 \delta(ds_2)\}.$ These satisfy the following. 1. $G_i \in L^1((\mathbb{R}/\mathcal{L}\mathbb{Z})^2)$ if $\mathbf{f}, \boldsymbol{\phi} \in H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Furthermore there exists C > 0 depending on the bi-Lipschitz constant of \mathbf{f} such that

$$|\delta \mathcal{M}_i(f)[\phi]| \le ||G_i||_{L^1} \le C\left([\tau]_{\frac{1}{2},2}^2 ||\phi'||_{L^{\infty}} + [\tau]_{\frac{1}{2},2}[\phi']_{\frac{1}{2},2}\right).$$

- 2. $G_i \in L^{\infty}((\mathbb{R}/\mathcal{L}\mathbb{Z})^2)$ if $\mathbf{f}, \boldsymbol{\phi} \in C^{1,1}(\mathbb{R}/\mathcal{L}\mathbb{Z})$.
- 3. $G_i \in C((\mathbb{R}/\mathcal{L}\mathbb{Z})^2)$ if $\mathbf{f}, \boldsymbol{\phi} \in C^2(\mathbb{R}/\mathcal{L}\mathbb{Z})$. where put $G_i(s,s) = (-1)^i \{ \boldsymbol{\kappa}(s) \cdot \boldsymbol{\phi}''(s) - \|\boldsymbol{\kappa}(s)\|_{\mathbb{R}^n}^2 \boldsymbol{\tau}(s) \cdot \boldsymbol{\phi}'(s) \}$. In particular $G_1(s,s) + G_2(s,s) = 0$.

Theorem 5 implies that $\delta \mathcal{M}_i(\boldsymbol{f})[\cdot]$ is a linear functional on $H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. The formal integration by parts shows that the domain $\delta \mathcal{M}_i(\boldsymbol{f})[\cdot]$ seems to be extended to $L^2(\mathbb{R}/\mathcal{L}\mathbb{Z})$. This is true for $\delta \mathcal{M}_1(\boldsymbol{f})$ if \boldsymbol{f} is in $H^3(\mathbb{R}/\mathcal{L}\mathbb{Z})$.

Theorem 6 Assume that $\mathbf{f} \in H^3(\mathbb{R}/\mathcal{L}\mathbb{Z})$ and that it is bi-Lipschitz. Let $\mathbf{\phi} \in L^2(\mathbb{R}/\mathcal{L}\mathbb{Z})$. Then it holds that

$$\delta \mathcal{M}_1(\boldsymbol{f})[\boldsymbol{\phi}] = \langle 2\pi(-\Delta_s)^{\frac{3}{2}}\boldsymbol{f} + \text{l.o.t.}(\boldsymbol{f}), \boldsymbol{\phi} \rangle_{L^2},$$
$$|\langle \text{l.o.t.}(\boldsymbol{f}), \boldsymbol{\phi} \rangle_{L^2}| \leq C(\lambda) \left(\|\boldsymbol{f}\|_{H^{3-\varepsilon}}^4 + 1 \right) \|\boldsymbol{\phi}\|_{L^2}.$$

A similar result for $\delta \mathcal{M}_2(\mathbf{f})[\cdot]$ seems to hold, which is our work in progress.

5 Future works

In [4] we have already got the second variational formula with the absolutely integrable integrand for $\mathbf{f} \in C^{3+\alpha}(\mathbb{R}/\mathcal{L}\mathbb{Z})$. We would like to show this fact for $\mathbf{f} \in H^{1,\infty}(\mathbb{R}/\mathcal{L}\mathbb{Z}) \cap H^{\frac{3}{2}}(\mathbb{R}/\mathcal{L}\mathbb{Z})$.

References

[1] S. Blatt, Boundedness and regularizing effects of O'Hara's knot energy, J. Knot Theory Ramifications 21 (1) (2012) 1250010, 9 pp.

- [2] M. H. Freedman, Z.-X. He & Z. Wang, *Möbius energy of knots and un-knots*, Ann. of Math. (2) **139** (1) (1994), 1–50.
- [3] Z.-X. He, The Euler-Lagrange equation and heat flow for the Möbius energy, Comm. Pure Appl. Math. **53** (4) (2000), 399–431.
- [4] A. Ishizeki, Some properties of the Möbius energy and its variational formulae, Master Thesis, Saitama University, 2013.
- [5] J. O'Hara & G. Solanes, Möbius invariant energies and average linking with circles, arXiv:1010.3764v2, 2010.