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1 Introduction

Let f : R/LZ > s — f(s) € R" be a closed curve in R™ with total length
L. sis an arc-length parameter. We denote the distance between f(s;) and
f(s2) along the closed curve by Z(f(s1), f(s2)).

The Mobius energy M is defined by
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where p.v. [ = lim._, 0 fﬁs1—52\>€ is Cauchy’s principal value.

FEach term of the integrand in (1) is not integrable on (R/LZ)?. The
subtraction of two terms gains the integrability, and therefore it is not easy
to find the proper domain of M. In this talk, we give decomposition of
M into three parts My, My and the absolute constant 4. The first part
M is a positive definite functional which implies the proper domain of M.
The second one M has the determinant structure which characterizes the
cancellation of the integrand.

2 The decomposition of the Mobius energy

At a point where f is differentiable, we denote the unit tangent vector by
7. Similarly K stands for the curvature vector at a point where f is twice
differentiable.

Theorem 1 The energy M(f) is decomposed as
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7(s1) - T(s2) (f(s1) = f(s2)) - 7(s1)
< det (f(s1) = f(s2)) - 7(s2) [ f(s1) = F(s2)lIzn )

We replace the Euclidean distance || f(s1) — f(s2)||g» in the denominator
of A (f) by the distance Z(f(s1), f(s2)) along the curve. Its integration is
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where [-] 1 is the intrinsic semi-norm of H 2(R/LZ). Roughly speaking,

My(f) < oo implies 7 € H2(R/LZ), i.e., f € H2(R/LZ). This is true
if f is bi-Lipschitz. It is known that M(f) < oo implies the bi-Lipschitz
continuity.
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Theorem 2 Supppose that f has no self-intersections.

1. Assume that f is bi-Lipschitz and f € H2(R/LZ). Then we have
Mi(f) € LY(R/LZ)?). In fact there exists a constant C depending on
the bi-Lipschitz constant of f such that

A (F)llr < O],
2. Suppose that f € CYY(R/LZ). Then #;(f) € L>((R/LZ)?) holds.

3. Let f € C*(R/LZ) and put A;(f)(s,s) = %Hm(s)\\%n Then
AM(F) € C(R/LZ)?) holds.

Since s is the arc-length parameter, we have ||7|g= = 1. In the proof of
the first statement we use this fact, i.e., f € H">*(R/LZ). As we see later
the first variation of M; is a linear functional on H-*(R/LZ)NH?(R/LZ).
Consequently we conclude that the proper domain of M is H*(R/LZ) N
H3(R/LZ). See [1].



3 The Mobius invariance

The energy M is called the Mobius energy because it is invariant under
the Mobius transformation. Surprisingly both M; and My have the Moius
invariance.

Theorem 3 We put

M@(f) = /v/(]R/EZ)2 %(f)dsldSQ.

Both My and My are Mobius invariance in the following sense.

1. The energy is invariant under the dilation.

2. Let f — p be the inversion with respect to a circle with the center c.
(1) M (f)+Ma(f) = Mi(p)+ Ms(p) holds for f € WH(R/277Z),
even if ¢ is on the closed curve f.

(2)  Assume that ¢ is not on f. If M(f) < oo, then My(f) = Mi(p)
and My (f) = Ma(p) hold.

Remark 1 M, is the same up to constant multiplication as the Epg-energy
which is introduced by O’Hara and Solanes [5] as a Mdébius invariant en-
ergy. Theorem 3 shows the Mobius invariance of the Eopg-energy under a
less reqularity condition.

Let S* be a circle in R”. Then it is known that M(S') = 4 and it is
the minimum value of M. This shows that M; + M is a non-negative
functional. In fact the energy density .#; + .#- is non-negative.

Theorem 4 (Non-negativity of the energy density) The sum of the
density is non-negative. In fact it holds that
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where

Ve =Ty — (To Tp)Tm, Tu= |51 — 52|(£(s1) — f(s2))

" 1f(s1) = fs2)llrn(s1 — s2)

and the vector T,, = Tn(s1,52) is defined as follows. If T(s1) + T(s2) # o,
then we define
_ T(s1) +T(s2)
Tm = .
[7(s1) + 7(s2)[[rn

Otherwise T, is defined by any unit vector satisfying T,, - 7(s1) = 0.

Corollary 1 Let f be a closed curve. M(f) =4 holds if and only if f is a
circle.

This is a known result, but we can give its analytic proof by using Theo-
rem 4.

4 The first variational formula

The first variational formula of M was calculated by [2, 3] using the integral
p.v. [[ in Cauchy’s principal value. The absolute integrability was shown
in [4] in the class C*T*(R/LZ). Using the decomposition of Theorem 1,
we can show the corresponding result on the proper domain H%*(R/LZ) N
H3(R/LZ).

Let ¢ be a function from R/LZ to R"™. The first variation of M;(f) is
defined by
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Theorem 5 (First variational formula) Assume that f has no self-inter-
section and M(f) < oo holds, which implies f € H-*(R/LZ) N H2(R/LZ)
and bi-Lipschitz. Let G; be the integrand of the first variational formula of
Ml, i.@.,

SMi(f)[¢] = / /@W)z Gils1, 52)dsadsy (i = 1,2),

where G;dsi1dsy = IM;(f)dsidss + M;(f){0(ds1)dss + ds10(ds2)}.
These satisfy the following.



1. G; € LM(R/LZ)?) if f,¢ € HY°(R/LZ) N H3(R/LZ).

Furthermore there exists C' > 0 depending on the bi-Lipschitz constant
of f such that

SM(F)(]] < IGillr < C (7,1l + 73,005 ) -

2. Gy € L®((R/LZ)?) if f,¢ € CY(R/LZ).

3. Gy € C((R/LZ)?) if f,¢p € C*(R/LZ).

where put Gy(s,s) = (=1)'{&(s) - ¢"(s) = [[K(s)l[2a7(s) - @'(s)}. In
particular G1(s, s) + Ga(s,s) = 0.

Theorem 5 implies that 0M;(f)[] is a linear functional on H"*(R/LZ)N
H?2(R/LZ). The formal integration by parts shows that the domain SM;( f)[]
seems to be extended to L?(R/LZ). This is true for M (f) if f is in
H3(R/LZ).

Theorem 6 Assume that f € H>(R/LZ) and that it is bi-Lipschitz. Let
¢ € L*(R/LZ). Then it holds that

SMy(F)l@) = 2n(—A)2 f + Lot.(f), @) e,
[ Lot.(£), d)rz| < OO (£ 3a-e + 1) |l 2

A similar result for o My (f)[-] seems to hold, which is our work in progress.

5 Future works

In [4] we have already got the second variational formula with the absolutely
integrable integrand for f € C***(R/LZ). We would like to show this fact
for f € H-*(R/LZ) N H2(R/LZ).
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