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1 Introduction

Let f : R/LZ ∋ s 7→ f(s) ∈ Rn be a closed curve in Rn with total length
L. s is an arc-length parameter. We denote the distance between f(s1) and
f(s2) along the closed curve by D(f(s1),f(s2)).

The Möbius energy M is defined by

(1) M(f) = p.v.

∫∫ (
1

∥f(s1)− f(s2)∥2Rn

− 1

D(f(s1),f(s2))2

)
ds1ds2,

where p.v.
∫∫

= limε→+0

∫∫
|s1−s2|>ε

is Cauchy’s principal value.

Each term of the integrand in (1) is not integrable on (R/LZ)2. The
subtraction of two terms gains the integrability, and therefore it is not easy
to find the proper domain of M. In this talk, we give decomposition of
M into three parts M1, M2 and the absolute constant 4. The first part
M1 is a positive definite functional which implies the proper domain of M.
The second one M2 has the determinant structure which characterizes the
cancellation of the integrand.

2 The decomposition of the Möbius energy

At a point where f is differentiable, we denote the unit tangent vector by
τ . Similarly κ stands for the curvature vector at a point where f is twice
differentiable.

Theorem 1 The energy M(f) is decomposed as

M(f) =

∫∫
(R/LZ)2

(M1(f) + M2(f)) ds1ds2 + 4,
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where

M1(f) =
∥τ (s1)− τ (s2)∥2Rn

2∥f(s1)− f(s2)∥2Rn

,

M2(f) =
2

∥f(s1)− f(s2)∥4Rn

× det

(
τ (s1) · τ (s2) (f(s1)− f(s2)) · τ (s1)

(f(s1)− f(s2)) · τ (s2) ∥f(s1)− f(s2)∥2Rn

)
.

We replace the Euclidean distance ∥f(s1)−f(s2)∥Rn in the denominator
of M1(f) by the distance D(f(s1),f(s2)) along the curve. Its integration is∫∫

(R/LZ)2

∥τ (s1)− τ (s2)∥2Rn

2D(f(s1),f(s2))2
ds1ds2 =

1

2
[τ ]21

2
,2
,

where [·] 1
2
is the intrinsic semi-norm of H

1
2 (R/LZ). Roughly speaking,

M1(f) < ∞ implies τ ∈ H
1
2 (R/LZ), i.e., f ∈ H

3
2 (R/LZ). This is true

if f is bi-Lipschitz. It is known that M(f) < ∞ implies the bi-Lipschitz
continuity.

Theorem 2 Supppose that f has no self-intersections.

1. Assume that f is bi-Lipschitz and f ∈ H
3
2 (R/LZ). Then we have

Mi(f) ∈ L1((R/LZ)2). In fact there exists a constant C depending on
the bi-Lipschitz constant of f such that

∥Mi(f)∥L1 ≤ C [τ ]21
2
,2 .

2. Suppose that f ∈ C1,1(R/LZ). Then Mi(f) ∈ L∞((R/LZ)2) holds.

3. Let f ∈ C2(R/LZ) and put Mi(f)(s, s) =
(−1)i−1

2
∥κ(s)∥2Rn. Then

Mi(f) ∈ C((R/LZ)2) holds.

Since s is the arc-length parameter, we have ∥τ∥Rn = 1. In the proof of
the first statement we use this fact, i.e., f ∈ H1,∞(R/LZ). As we see later

the first variation of Mi is a linear functional on H1,∞(R/LZ)∩H
3
2 (R/LZ).

Consequently we conclude that the proper domain of M is H1,∞(R/LZ) ∩
H

3
2 (R/LZ). See [1].
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3 The Möbius invariance

The energy M is called the Möbius energy because it is invariant under
the Möbius transformation. Surprisingly both M1 and M2 have the Möius
invariance.

Theorem 3 We put

Mi(f) =

∫∫
(R/LZ)2

Mi(f)ds1ds2.

Both M1 and M2 are Möbius invariance in the following sense.

1. The energy is invariant under the dilation.

2. Let f → p be the inversion with respect to a circle with the center c.

(1) M1(f)+M2(f) = M1(p)+M2(p) holds for f ∈ W 1,1(R/2πZ),
even if c is on the closed curve f .

(2) Assume that c is not on f . If M(f) < ∞, then M1(f) = M1(p)
and M2(f) = M2(p) hold.

Remark 1 M2 is the same up to constant multiplication as the EOS-energy
which is introduced by O’Hara and Solanes [5] as a Möbius invariant en-
ergy. Theorem 3 shows the Möbius invariance of the EOS-energy under a
less regularity condition.

Let S1 be a circle in Rn. Then it is known that M(S1) = 4 and it is
the minimum value of M. This shows that M1 + M2 is a non-negative
functional. In fact the energy density M1 + M2 is non-negative.

Theorem 4 (Non-negativity of the energy density) The sum of the
density is non-negative. In fact it holds that

M1(f) + M2(f)

=
1

∥f(s1)− f(s2)∥2Rn

×
{
1

2
∥τ (s1) + τ (s2)∥2Rn∥ν∗∥2Rn + (ν∗ · τ (s1))2 + (ν∗ · τ (s2))2

}
≥ 0,
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where

ν∗ = τ ∗ − (τ ∗ · τm)τm, τ ∗ =
|s1 − s2|(f(s1)− f(s2))

∥f(s1)− f(s2)∥Rn(s1 − s2)

and the vector τm = τm(s1, s2) is defined as follows. If τ (s1) + τ (s2) ̸= o,
then we define

τm =
τ (s1) + τ (s2)

∥τ (s1) + τ (s2)∥Rn

.

Otherwise τm is defined by any unit vector satisfying τm · τ (s1) = 0.

Corollary 1 Let f be a closed curve. M(f) = 4 holds if and only if f is a
circle.

This is a known result, but we can give its analytic proof by using Theo-
rem 4.

4 The first variational formula

The first variational formula of M was calculated by [2, 3] using the integral
p.v.

∫∫
in Cauchy’s principal value. The absolute integrability was shown

in [4] in the class C3+α(R/LZ). Using the decomposition of Theorem 1,
we can show the corresponding result on the proper domain H1,∞(R/LZ) ∩
H

3
2 (R/LZ).
Let ϕ be a function from R/LZ to Rn. The first variation of Mi(f) is

defined by

δMi(f)[ϕ] =
d

dε
Mi(f + εϕ)

∣∣∣∣
ε=0

.

Theorem 5 (First variational formula) Assume that f has no self-inter-

section and M(f) < ∞ holds, which implies f ∈ H1,∞(R/LZ)∩H
3
2 (R/LZ)

and bi-Lipschitz. Let Gi be the integrand of the first variational formula of
M1, i.e.,

δMi(f)[ϕ] =

∫∫
(R/LZ)2

Gi(s1, s2)ds1ds2 (i = 1, 2),

where Gids1ds2 = δMi(f)ds1ds2 +Mi(f){δ(ds1)ds2 + ds1δ(ds2)}.
These satisfy the following.
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1. Gi ∈ L1((R/LZ)2) if f ,ϕ ∈ H1,∞(R/LZ) ∩H
3
2 (R/LZ).

Furthermore there exists C > 0 depending on the bi-Lipschitz constant
of f such that

|δMi(f)[ϕ]| ≤ ∥Gi∥L1 ≤ C
(
[τ ]21

2
,2
∥ϕ′∥L∞ + [τ ] 1

2
,2[ϕ

′] 1
2
,2

)
.

2. Gi ∈ L∞((R/LZ)2) if f ,ϕ ∈ C1,1(R/LZ).

3. Gi ∈ C((R/LZ)2) if f ,ϕ ∈ C2(R/LZ).
where put Gi(s, s) = (−1)i{κ(s) · ϕ′′(s) − ∥κ(s)∥2Rnτ (s) · ϕ′(s)}. In
particular G1(s, s) +G2(s, s) = 0.

Theorem 5 implies that δMi(f)[·] is a linear functional on H1,∞(R/LZ)∩
H

3
2 (R/LZ). The formal integration by parts shows that the domain δMi(f)[·]

seems to be extended to L2(R/LZ). This is true for δM1(f) if f is in
H3(R/LZ).

Theorem 6 Assume that f ∈ H3(R/LZ) and that it is bi-Lipschitz. Let
ϕ ∈ L2(R/LZ). Then it holds that

δM1(f)[ϕ] = ⟨2π(−∆s)
3
2f + l.o.t.(f),ϕ⟩L2 ,

|⟨ l.o.t.(f),ϕ⟩L2| ≤ C(λ)
(
∥f∥4H3−ε + 1

)
∥ϕ∥L2 .

A similar result for δM2(f)[·] seems to hold, which is our work in progress.

5 Future works

In [4] we have already got the second variational formula with the absolutely
integrable integrand for f ∈ C3+α(R/LZ). We would like to show this fact

for f ∈ H1,∞(R/LZ) ∩H
3
2 (R/LZ).

References

[1] S. Blatt, Boundedness and regularizing effects of O’Hara’s knot energy,
J. Knot Theory Ramifications 21 (1) (2012) 1250010, 9 pp.

5



[2] M. H. Freedman, Z.-X. He & Z. Wang, Möbius energy of knots and un-
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