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We consider a well-posedness issue of the Cauchy proglem of nonlinear parabolic elliptic
system called multiple drift-diffusion equation in two space dimensions: For i = 1, 2 · · ·m,

(P)


∂tui − ∆ui + ∇ · (ui∇ψ) = 0, t > 0, x ∈ R2,

− ∆ψ =
m∑

j=1

αjuj , αj = ±1, t > 0, x ∈ R2,

ui(x, 0) = ui0(x), x ∈ R2,

where ui = ui(t, x) denote the densities of i-th component and ψ denotes the potential of the
pariticle field.

In [19], we have studied the system for 2 kinds of pariticle. Then it is developed by the first
author that the multi-component system of drift-diffusion equation is considered in [17] and
established the local well-posedenss result for the class L2

s(R2), where s > 1. We have shown
the local and global well-posedness for the drift-diffusion equation in Lp with given initial data.

(P’)


∂tn− ∆n+ κ∇ · (n∇ψ) = 0, t > 0, x ∈ Rn,

∂tp− ∆p− κ∇ · (p∇ψ) = 0, t > 0, x ∈ Rn,

− ∆ψ = p− n, x ∈ Rn,

n(0, x) = n0(x), p(0, x) = p0(x).

The above equation (P’) for 2 kind of paticle in the case of κ = 1 is the typical and simplest
model for the semi-conductor device simulation ([2], [11], [12], [14], [18], [20]). On the other
hand, when κ = −1 and n = 2, the equation is strongly relevant to the model of self-interacting
particles with different mass (see Biler-Nadzieja [4], see also [1], [3]) and the model of the
aggregation of mold known as the Keller-Segel system [15]. It is suggested that the solution
that has enough regularity (and integrability) may have the instability of the solution, namely
under a certain condition on the initial data, the solution blows up in finite time. In the case
of a single kind of self-interacting particles, it is also shown that the solution blow up in a finite
time as one can find in [1], [3].

This property is naturally inherited to the system (P). Indeed Kurokiba-Ogawa [18] showed
the finite time blow up of the solution for the two particle cases and it is generalized in [6],[7],
[9], [10], [8] and [18]. On the other hand, the multi-particle system is considered by Wolansky
[27] in the bounded domain case.

The argument in the Keller-Segel model systematically used that the solution is in L1(R2)
([21], [22], [23]), moreover if the solution is non-negative, L1 norm of the solution are preserved
in time. In this sence it is important to consider the existence of the solution in a function
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space included in L1(R2). To avoid some technical comlexity, we employ the weighted L2(R2)
space which is slightly smoller space than L1(R2) and ensure that the L1 norm of the solution
make sense. Indeed, we introduced in the previous result [18], the weighted L2 space defined as
follows. For s > 0,

L2
s(R2) = {f ∈ L2(R2); |x|sf(x) ∈ L2(R2)}.

we first show the existence and uniqueness of the solution for the two dimensional drift-diffusion
type system in a subset of L1(R2). Generalization of the local wellposedness result for the
multi-component system (P) is developed by several authors. We shows the local well-posedness
for the system (P) in a weighted space L2

s(R2) with s > 1 and shows the finite time blow up
of solution. On the other hand, it is meaningful if we consider the wellposedness issue in the
critical function space where the invariant scaling transform is invariant. For the solution of
(P), the invariant scaling uλ(t, x) = λ2u(λ2t, λx) and ψλ(t, x) = u(λ2t, λx) with λ > 0. Then
L1(R2) is invariant function space under this scaling transform. While for the weighted space,
s = 1, i.e., L2

1(R2) is the invariant space. In the former results, this critical space is eliminated
since we have some difficulty to controle ψ in this case.

Theorem 1. (local well-posedness in a critical weighted space) Let ui0(x) ∈ L2
1(R2), i =

1, 2, · · · , n. Then there exists T = T (‖u10‖L2
1
, ‖u20‖L2

1
, · · · , ‖un0‖L2

1
) > 0 and a unique weak solu-

tion {ui}n
i=1 of (P) with the initial data {ui0}n

i=1 such that ui ∈ C([0, T ];L2
1(R2))∩L2(0, T ; Ḣ1(R2)).

Moreover the solution has higer regularity ui ∈ C([0, T ];H2(R2) ∩ L2
1(R2)) ∩ C1(0, T ; L̇2

1(R2))
and it is the strong solution for (P).

The solution obtained in Theorem 1 belongs to L1(R2) and hence it follows that the solution
maintain the mass conservation law and meaningful identities. First of all, if the initial data
is non-negative, then the maximum principle for the parabolic equation assures that the weak
solution preserves non-negative structure. This fact immediately gives the L1(R2) conservation
law for the weak solution.

Proposition 2. (global existence) Assume that ui0 are all non negative in L2
1(R2). If αi = −1

for any i = 1, 2, · · ·n, then the corresponding solution u obtained by Theorem 1 globally exists.

To show the local wellposedness in the critical weighted space L2
1(R2), we need to introduce

the Sobolev type inequality to controle ∇(−∆)−1ψ. In Kurokiba-Ogawa [18] it is used a variant
of the Brezis-Gallouet type inequality (cf. [25]). However the critial scale L2

1(R2) was eliminated
by some reason.

Moreover the subject of this study is to show the following instrability result.

Theorem 3. (finite time blow up) We assume that αi = 1 for all i = 1, 2, · · ·n. For s > 1, let
ui0 be in L2

s(R2) with ui0 ≥ 0 everywhere and satisfies
n∑

i=1

µi

∫
R2

ui0dx > 8π.

Then the solution to (P) blows up in a finite time. Namely, there exists Tm <∞ such that

lim sup
t→Tm

n∑
i=1

‖〈x〉sui(t)‖2 = ∞,

where 〈x〉 = (1 + |x|2)1/2.
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[3] Biler, P., Hilhorst, D., Nadzieja, T., Existence and nonexistence of solutions for a model of gravita-
tional interaction of particles, II, Colloq. Math. 67 (1994), 297–308.

[4] Biler, P., Nadzieja, T., A nonlolcal singular parabolic problem modelling gravitational interaction of
particles, Adv. Diff. Equations, 3 (1998), 177–197.

[5] Brezis, H., Gallouet, T., Nonlinear Schrödinger evolution equations, Nonlinear Anal. T.M.A., 4
(1980), 677-681.

[6] Conca, C., Espejo, E. E., Threshold condition for global existence and blow-up to a radially sym-
metric drift-diffusion system, Applied Math. Letters 25 (2012) 352-356.

[7] Conca, C., Espejo, E. E., Vilches, K., Remark on the blow-up and global existence for a two-species
chemotactic Keller-Segel system in R2, Euro. J. Appl. Math. 22 (2011), 553-580.

[8] Espejo, E. E., Kurokiba, M., Suzuki, T. , Blowup threshold and collapse mass separation for a
drift-diffusion system in space-dimension two, to appear in Comm. Pure Appl. Anal.

[9] Espejo, E. E. Stevens A., Velázquez, J. J. L., Simultaneous finite time blow-up in a two-species
model for chemotaxis, Analysis 29 (2010), 317-338.

[10] Espejo, E. E. Stevens A., Velázquez, J. J. L., A note on non–simultaneous blow-up for a drift-diffusion
model, Differntial IntegralvEquations 23 (2010), 451-462.

[11] Gajewski, H., On the uniqueness of solutions to the drift-diffusion model of semiconductor devices,
Math. Model. Meth. Appl Sci. 4 (1994), 121-133.
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