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We study the orbital stability and instability of solitary wave solutions
for nonlinear Schrödinger equations of the form

i∂tu = −∂2
xu− i|u|2∂xu− b|u|4u, (t, x) ∈ R× R, (1)

where b ≥ 0 is a constant. We define the energy E : H1(R) → R by

E(v) =
1

2
∥∂xv∥2L2 −

1

4
(i|v|2∂xv, v)L2 − b

6
∥v∥6L6 ,

where (v, w)L2 = ℜ
∫
R
v(x)w(x) dx. Then, (1) is written in a Hamiltonian

form i∂tu = E ′(u) in H−1(R).
The Cauchy problem for (1) is locally well-posed in the energy space

H1(R) (see [3]). For any u0 ∈ H1(R), there exist Tmax ∈ (0,∞] and a unique
solution u ∈ C([0, Tmax), H

1(R)) of (1) with u(0) = u0 such that either
Tmax = ∞ or Tmax < ∞ and lim

t→Tmax

∥u(t)∥H1 = ∞. Moreover, the solution

u(t) satisfies

E(u(t)) = E(u0), Q0(u(t)) = Q0(u0), Q1(u(t)) = Q1(u0)

for all t ∈ [0, Tmax), where Q0 and Q1 are defined by

Q0(v) =
1

2
∥v∥2L2 , Q1(v) =

1

2
(i∂xv, v)L2 .

For θ = (θ0, θ1) ∈ R2, we define T (θ)v(x) = eiθ0v(x − θ1). It is known
that (1) has a two parameter family of solitary wave solutions

T (ωt)ϕω(x) = eiω0tϕω(x− ω1t),

where ω = (ω0, ω1) ∈ Ω := {(ω0, ω1) ∈ R2 : ω2
1 < 4ω0}, γ = 1 +

16

3
b,

ϕω(x) = ϕ̃ω(x) exp

(
i
ω1

2
x− i

4

∫ x

−∞
|ϕ̃ω(η)|2 dη

)
,

ϕ̃ω(x) =

{
2(4ω0 − ω2

1)

−ω1 +
√
ω2
1 + γ(4ω0 − ω2

1) cosh(
√
4ω0 − ω2

1 x)

}1/2

.



We note that ϕω(x) is a solution of

−∂2
xϕ+ ω0ϕ+ ω1i∂xϕ− i|ϕ|2∂xϕ− b|ϕ|4ϕ = 0, x ∈ R,

and ϕ̃ω(x) is a solution of

−∂2
xϕ+

4ω0 − ω2
1

4
ϕ+

ω1

2
|ϕ|2ϕ− 3

16
γ|ϕ|4ϕ = 0, x ∈ R.

For the case b = 0, Colin and Ohta [1] proved that the solitary wave
solution T (ωt)ϕω of (1) is stable for all ω ∈ Ω.

In this talk, we consider the case b > 0, and prove the following ([2]).

Theorem 1. Let b > 0. Then there exists κ = κ(b) ∈ (0, 1) such that the
solitary wave solution T (ωt)ϕω of (1) is stable if −2

√
ω0 < ω1 < 2κ

√
ω0, and

unstable if 2κ
√
ω0 < ω1 < 2

√
ω0.

Remark 1. Let b > 0, γ = 1 +
16

3
b, and

g(ξ) =
2(γ − 1)

ξ
tan−1 1 +

√
1 + ξ2

ξ
, ξ ∈ (0,∞).

Then, g : (0,∞) → (0,∞) is strictly decreasing and bijective. Thus, for any
b > 0, there exists a unique ξ̂ = ξ̂(b) ∈ (0,∞) such that g(ξ̂) = 1. The
constant κ in Theorem 1 is given by κ = (1 + ξ̂2/γ)−1/2.

Remark 2. The sufficient condition −2
√
ω0 < ω1 < 2κ

√
ω0 for stability of

T (ωt)ϕω is equivalent to Q1(ϕω) > 0, and the sufficient condition 2κ
√
ω0 <

ω1 < 2
√
ω0 for instability is equivalent to Q1(ϕω) < 0.
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