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We study the orbital stability and instability of solitary wave solutions
for nonlinear Schrodinger equations of the form

10 = —0%u — i|u|?O,u — blu*u, (t,7) € R x R, (1)

where b > 0 is a constant. We define the energy F : H'(R) — R by

1 1. b
B() = 0:0l3 — 1 (iloPasv,v) e — ol
where (v, w)rz = 3?/ v(z)w(z)dr. Then, (1) is written in a Hamiltonian

form idyu = E'(w) in H-1(R).

The Cauchy problem for (1) is locally well-posed in the energy space
H'(R) (see [3]). For any uy € H'(R), there exist Tiayx € (0, 00] and a unique
solution u € C([0, Thax), H'(R)) of (1) with u(0) = wug such that either
Trax = 00 Or Thax < 00 and . lim ||u(t)||g: = oco. Moreover, the solution

u(t) satisfies

E(u(t)) = E(uo), Qo(u(t)) = Qoluo), Qu(u(t)) = Q1(uo)
for all t € [0, Tihax), where Qo and @) are defined by

1

Qo(v) = gl Qu(v) = ()

For 6 = (0y,6,) € R?, we define T'(0)v(x) = e®v(z — ;). It is known

that (1) has a two parameter family of solitary wave solutions

T(wt) g (x) = "¢, (x — wit),

max
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where w = (wp,w;) € Q = {(wo, w1) € R? : w? < 4dwp},vy=1+ ?b’

outa) = dufe)eww (i = 5 [ 16mPan).,
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We note that ¢, (x) is a solution of
and ¢, (z) is a solution of
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For the case b = 0, Colin and Ohta [1] proved that the solitary wave
solution T'(wt)¢,, of (1) is stable for all w € Q.
In this talk, we consider the case b > 0, and prove the following ([2]).

Theorem 1. Let b > 0. Then there exists k = k(b) € (0,1) such that the
solitary wave solution T (wt)¢,, of (1) is stable if —2,/wy < w1 < 2K4/wy, and
unstable if 2k\/wy < w < 24/wp.
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Remark 1. Let b >0, v =1+ ?b, and

2(y—1 1+ /1 2
4l )tarf1 SRVARE . £€(0,00).
§ §
Then, g : (0,00) — (0,00) is strictly decreasing and bijective. Thus, for any
b > 0, there exists a unique § = £(b) € (0,00) such that g(§) = 1. The
constant x in Theorem 1 is given by & = (1 + £2/y)~/2.

9(§) =

Remark 2. The sufficient condition —2,/wy < w; < 2k4/wy for stability of
T(wt)¢,, is equivalent to Q1(¢.) > 0, and the sufficient condition 2k,/wy <
wy < 24/wy for instability is equivalent to @Q1(¢,) < 0.
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