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For n > 2 and 1 < 0 < 2, we study the following initial value problem for the drift-diffusion

equation:

ou+ (A2 -V (uV) =0, t>0, 2 €R",
(1) —AY = u, t>0, zeR"

u(0,x) = up(z), z € R",
where (=A)?2p = F1[|¢]? Fl¢]] and ug : R* — R, is a given initial data. The drift-diffusion
equation is known as the model of semiconductor device simulations. The unknown functions
u:(0,00) x R — Ry and Vi : (0,00) x R — R™ are the density of electrons and the potential
of electromagnetic field, respectively. When 6 > 1, (1) is parabolic. Hence the LP theory
for a parabolic equation derives well-posedness and global existence of solutions. Moreover an
asymptotic expansion of the solution as t — oo was already provided. When 6 = 1, the LP theory
for a parabolic equation does not work since (1) is elliptic. In the case # = 1, we introduce

(2) U)\(t, l‘) = )‘u()‘ta )\$), ¢)\(t> l‘) = w()‘tv )\J))
Then (uy, 1)) also fulfills the first equation on (1). The authors and Kato already proved that
the solution exists globally in the Besov space which is corresponding to (2) [2]. Furthermore
the solution satisfies the mass conservation ||u(t)|| 1) = [|uollL1(rny and
—n(1-3)
3) [u®)llLr@ny < CL+E) 7
for 1 < p < oo. The decay rate on (3) is same as one of the fundamental solution of the linear
equation, i.e., the Poisson kernel:
P(t,x) = n "5 T(%L) ¢ (8 + [of?) "
Moreover the smoothing effect of e_t(_A)l/ng = P(t) % ¢ leads
(4) u € C%((0, 00); H>(R™)).

The large-time behavior of the solution is established in the following theorem.

Theorem 1 ([4]). Letn >3, 0 =1, (1+ |z|)ug € L*(R™) and the solution u of (1) satisfy (3)
and (4). Then

_en(i-1)-1
lu(t) = MyP(t) = my - VP(t)]| pany = o(t <77) (t— o)
holds for 1 < q < co, where My = [, uo(y)dy and my = [g.(—y)uo(y)dy.

Before considering the case n = 2, we refer the following corresponding problem:

(5) Oyw + (—3%)1/%1 +wiw =0, t>0, ze€R,
w(0,2) = wo(x), x eR.
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For the solution w of this Burgers equation, Iwabuchi [1] showed [|w(t) — P(t) [ wo(y)dyllr2®) >
¢(1+1)73/210g(2 + t). On the other hand, the decay rate of the nonlinear term on (5) and one
on (1) with n = 2 are same. Namely HwQ(t)HLl(R) = O(t™1) and [uVY ()| 1 r2) = O@t™!) as
t — oo hold. Therefore, we can expect that the asymptotic expansion of the solution of (1)
contains a logarithmic term. When n = 2, we introduce the following function:

J(t,z) = " VP(t —s) * (PV(—=A)"1P)(s)ds
0
+ /t P(t —s) %V - (PV(=A)"'P)(s)ds.
t/2

Since PV(—A)~!P is odd in z, J(t) is well-defined on L!(R?)N L>°(R?). Moreover J # 0([3]).
From the scaling property A3J(\t, A\z) = J(t,z) (A > 0), we see that [l J ()]l Lr(r2) has a same
decay rate as ||[VP(t)||»(r2)- When n = 2, the asymptotic expansion for (1) is established in
the following theorem.

Theorem 2 ([4]). Letn =2, 0 =1, (1 + |2|)ug € L*(R?) and the solution u of (1) satisfy (3)
and (4). Then

11y
[u(t) = MyP(t) = 1m0 - VP(£) = MET ()] 1y ey = ot 27071 (- o)
holds for 1 < q < oo, where My = [g, uo(y)dy and my = [g.(—y)uo(y)dy.

Theorem 2 concludes that the large-time behavior of the solution of (1) has no logarithmic
term. Theorems 1 and 2 state that decay of the solution v is decided by the total mass and the
first moment of the initial data. The correction term J is derived from the following procedure.
By the Duhamel formular, (1) is represented by

(6) u(t) = P(t) * up + /0 P(t—s)* V- (uV(=A)" u)(s)ds.

On the nonlinear term, we renormalize u to M,P. Then we obtain M2.J(t). The proof of
theorems are based on the LP-L7 estimate for P(t) x ¢. For the proof, we prepare the following
proposition.

Proposition 3. Letn > 2, 0 =1 and the solution u of (1) satisfy (3) and (4). Then there exist
positive constants C' and T such that

) |(=2) 2 u(t)| gy < O+ 1)
holds for any t > T.

This proposition is shown by the energy method.
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