ASYMPTOTIC PROFILE OF SOLUTIONS TO THE DRIFT-DIFFUSION EQUATION WITH CRITICAL DISSIPATION

MASAKAZU YAMAMOTO AND YUUSUKE SUGIYAMA

For $n \ge 2$ and $1 \le \theta \le 2$, we study the following initial value problem for the drift-diffusion equation:

(1)
$$\begin{cases} \partial_t u + (-\Delta)^{\theta/2} u - \nabla \cdot (u \nabla \psi) = 0, & t > 0, x \in \mathbb{R}^n, \\ -\Delta \psi = u, & t > 0, x \in \mathbb{R}^n, \\ u(0, x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$

where $(-\Delta)^{\theta/2}\varphi = \mathcal{F}^{-1}[|\xi|^{\theta}\mathcal{F}[\varphi]]$ and $u_0 : \mathbb{R}^n \to \mathbb{R}_+$ is a given initial data. The drift-diffusion equation is known as the model of semiconductor device simulations. The unknown functions $u: (0, \infty) \times \mathbb{R} \to \mathbb{R}_+$ and $\nabla \psi: (0, \infty) \times \mathbb{R} \to \mathbb{R}^n$ are the density of electrons and the potential of electromagnetic field, respectively. When $\theta > 1$, (1) is parabolic. Hence the L^p theory for a parabolic equation derives well-posedness and global existence of solutions. Moreover an asymptotic expansion of the solution as $t \to \infty$ was already provided. When $\theta = 1$, the L^p theory for a parabolic equation does not work since (1) is elliptic. In the case $\theta = 1$, we introduce

(2)
$$u_{\lambda}(t,x) = \lambda u(\lambda t, \lambda x), \quad \psi_{\lambda}(t,x) = \psi(\lambda t, \lambda x).$$

Then $(u_{\lambda}, \psi_{\lambda})$ also fulfills the first equation on (1). The authors and Kato already proved that the solution exists globally in the Besov space which is corresponding to (2) [2]. Furthermore the solution satisfies the mass conservation $||u(t)||_{L^{1}(\mathbb{R}^{n})} = ||u_{0}||_{L^{1}(\mathbb{R}^{n})}$ and

(3)
$$||u(t)||_{L^p(\mathbb{R}^n)} \le C(1+t)^{-n(1-\frac{1}{p})}$$

for $1 \le p \le \infty$. The decay rate on (3) is same as one of the fundamental solution of the linear equation, i.e., the Poisson kernel:

$$P(t,x) = \pi^{-\frac{n+1}{2}} \Gamma(\frac{n+1}{2}) t \left(t^2 + |x|^2\right)^{-\frac{n+1}{2}}.$$

Moreover the smoothing effect of $e^{-t(-\Delta)^{1/2}}\varphi = P(t) * \varphi$ leads

(4)
$$u \in C^{\infty}((0,\infty); H^{\infty}(\mathbb{R}^n)).$$

The large-time behavior of the solution is established in the following theorem.

Theorem 1 ([4]). Let $n \ge 3$, $\theta = 1$, $(1 + |x|)u_0 \in L^1(\mathbb{R}^n)$ and the solution u of (1) satisfy (3) and (4). Then

$$\|u(t) - M_u P(t) - m_u \cdot \nabla P(t)\|_{L^q(\mathbb{R}^n)} = o\left(t^{-n(1-\frac{1}{q})-1}\right) \quad (t \to \infty)$$

holds for $1 < q < \infty$, where $M_u = \int_{\mathbb{R}^n} u_0(y) dy$ and $m_u = \int_{\mathbb{R}^n} (-y) u_0(y) dy$.

Before considering the case n = 2, we refer the following corresponding problem:

(5)
$$\begin{cases} \partial_t \omega + (-\partial_x^2)^{1/2} \omega + \omega \partial_x \omega = 0, \quad t > 0, \quad x \in \mathbb{R}, \\ \omega(0, x) = \omega_0(x), \qquad \qquad x \in \mathbb{R}. \end{cases}$$

For the solution ω of this Burgers equation, Iwabuchi [1] showed $\|\omega(t) - P(t) \int_{\mathbb{R}} \omega_0(y) dy\|_{L^2(\mathbb{R})} \ge c(1+t)^{-3/2} \log(2+t)$. On the other hand, the decay rate of the nonlinear term on (5) and one on (1) with n = 2 are same. Namely $\|\omega^2(t)\|_{L^1(\mathbb{R})} = O(t^{-1})$ and $\|u\nabla\psi(t)\|_{L^1(\mathbb{R}^2)} = O(t^{-1})$ as $t \to \infty$ hold. Therefore, we can expect that the asymptotic expansion of the solution of (1) contains a logarithmic term. When n = 2, we introduce the following function:

$$\begin{split} J(t,x) &= \int_0^{t/2} \nabla P(t-s) * (P\nabla(-\Delta)^{-1}P)(s) ds \\ &+ \int_{t/2}^t P(t-s) * \nabla \cdot (P\nabla(-\Delta)^{-1}P)(s) ds. \end{split}$$

Since $P\nabla(-\Delta)^{-1}P$ is odd in x, J(t) is well-defined on $L^1(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2)$. Moreover $J \neq 0([3])$. From the scaling property $\lambda^3 J(\lambda t, \lambda x) = J(t, x)$ ($\lambda > 0$), we see that $\|J(t)\|_{L^p(\mathbb{R}^2)}$ has a same decay rate as $\|\nabla P(t)\|_{L^p(\mathbb{R}^2)}$. When n = 2, the asymptotic expansion for (1) is established in the following theorem.

Theorem 2 ([4]). Let n = 2, $\theta = 1$, $(1 + |x|)u_0 \in L^1(\mathbb{R}^2)$ and the solution u of (1) satisfy (3) and (4). Then

$$\|u(t) - M_u P(t) - m_u \cdot \nabla P(t) - M_u^2 J(t)\|_{L^q(\mathbb{R}^2)} = o\left(t^{-2(1-\frac{1}{q})-1}\right) \quad (t \to \infty)$$

holds for $1 < q < \infty$, where $M_u = \int_{\mathbb{R}^n} u_0(y) dy$ and $m_u = \int_{\mathbb{R}^n} (-y) u_0(y) dy$.

Theorem 2 concludes that the large-time behavior of the solution of (1) has no logarithmic term. Theorems 1 and 2 state that decay of the solution u is decided by the total mass and the first moment of the initial data. The correction term J is derived from the following procedure. By the Duhamel formular, (1) is represented by

(6)
$$u(t) = P(t) * u_0 + \int_0^t P(t-s) * \nabla \cdot (u\nabla(-\Delta)^{-1}u)(s) ds.$$

On the nonlinear term, we renormalize u to $M_u P$. Then we obtain $M_u^2 J(t)$. The proof of theorems are based on the L^p - L^q estimate for $P(t) * \varphi$. For the proof, we prepare the following proposition.

Proposition 3. Let $n \ge 2$, $\theta = 1$ and the solution u of (1) satisfy (3) and (4). Then there exist positive constants C and T such that

(7)
$$\left\| (-\Delta)^{1/4} u(t) \right\|_{L^2(\mathbb{R}^n)} \le C t^{-1/2} (1+t)^{-n/2}$$

holds for any $t \geq T$.

This proposition is shown by the energy method.

References

- Iwabuchi, T., Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
- [2] Sugiyama, Y., Kato, K., Yamamoto, M., Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space, preprint.
- [3] Yamamoto, M., Differential Integral Equations, 25 (2012), 731–758.
- [4] Yamamoto, M., Sugiyama, Y., Asymptotic behavior of solutions to the drift-diffusion equation with critical dissipation, preprint.