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For n ≥ 2 and 1 ≤ θ ≤ 2, we study the following initial value problem for the drift-diffusion
equation:

(1)


∂tu + (−∆)θ/2u −∇ · (u∇ψ) = 0, t > 0, x ∈ Rn,

−∆ψ = u, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where (−∆)θ/2ϕ = F−1[|ξ|θF [ϕ]] and u0 : Rn → R+ is a given initial data. The drift-diffusion
equation is known as the model of semiconductor device simulations. The unknown functions
u : (0,∞) × R → R+ and ∇ψ : (0,∞) × R → Rn are the density of electrons and the potential
of electromagnetic field, respectively. When θ > 1, (1) is parabolic. Hence the Lp theory
for a parabolic equation derives well-posedness and global existence of solutions. Moreover an
asymptotic expansion of the solution as t → ∞ was already provided. When θ = 1, the Lp theory
for a parabolic equation does not work since (1) is elliptic. In the case θ = 1, we introduce

(2) uλ(t, x) = λu(λt, λx), ψλ(t, x) = ψ(λt, λx).

Then (uλ, ψλ) also fulfills the first equation on (1). The authors and Kato already proved that
the solution exists globally in the Besov space which is corresponding to (2) [2]. Furthermore
the solution satisfies the mass conservation ∥u(t)∥L1(Rn) = ∥u0∥L1(Rn) and

(3) ∥u(t)∥Lp(Rn) ≤ C(1 + t)−n(1− 1
p
)

for 1 ≤ p ≤ ∞. The decay rate on (3) is same as one of the fundamental solution of the linear
equation, i.e., the Poisson kernel:

P (t, x) = π−n+1
2 Γ(n+1

2 ) t (t2 + |x|2)−
n+1

2 .

Moreover the smoothing effect of e−t(−∆)1/2
ϕ = P (t) ∗ ϕ leads

(4) u ∈ C∞((0,∞);H∞(Rn)).

The large-time behavior of the solution is established in the following theorem.

Theorem 1 ([4]). Let n ≥ 3, θ = 1, (1 + |x|)u0 ∈ L1(Rn) and the solution u of (1) satisfy (3)
and (4). Then

∥u(t) − MuP (t) − mu · ∇P (t)∥Lq(Rn) = o
(
t
−n(1− 1

q
)−1) (t → ∞)

holds for 1 < q < ∞, where Mu =
∫

Rn u0(y)dy and mu =
∫

Rn(−y)u0(y)dy.

Before considering the case n = 2, we refer the following corresponding problem:

(5)
{

∂tω + (−∂2
x)1/2ω + ω∂xω = 0, t > 0, x ∈ R,

ω(0, x) = ω0(x), x ∈ R.
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For the solution ω of this Burgers equation, Iwabuchi [1] showed ∥ω(t)−P (t)
∫

R ω0(y)dy∥L2(R) ≥
c(1 + t)−3/2 log(2 + t). On the other hand, the decay rate of the nonlinear term on (5) and one
on (1) with n = 2 are same. Namely ∥ω2(t)∥L1(R) = O(t−1) and ∥u∇ψ(t)∥L1(R2) = O(t−1) as
t → ∞ hold. Therefore, we can expect that the asymptotic expansion of the solution of (1)
contains a logarithmic term. When n = 2, we introduce the following function:

J(t, x) =
∫ t/2

0
∇P (t − s) ∗ (P∇(−∆)−1P )(s)ds

+
∫ t

t/2
P (t − s) ∗ ∇ · (P∇(−∆)−1P )(s)ds.

Since P∇(−∆)−1P is odd in x, J(t) is well-defined on L1(R2) ∩ L∞(R2). Moreover J ̸≡ 0([3]).
From the scaling property λ3J(λt, λx) = J(t, x) (λ > 0), we see that ∥J(t)∥Lp(R2) has a same
decay rate as ∥∇P (t)∥Lp(R2). When n = 2, the asymptotic expansion for (1) is established in
the following theorem.

Theorem 2 ([4]). Let n = 2, θ = 1, (1 + |x|)u0 ∈ L1(R2) and the solution u of (1) satisfy (3)
and (4). Then∥∥u(t) − MuP (t) − mu · ∇P (t) − M2

uJ(t)
∥∥

Lq(R2)
= o

(
t
−2(1− 1

q
)−1) (t → ∞)

holds for 1 < q < ∞, where Mu =
∫

Rn u0(y)dy and mu =
∫

Rn(−y)u0(y)dy.

Theorem 2 concludes that the large-time behavior of the solution of (1) has no logarithmic
term. Theorems 1 and 2 state that decay of the solution u is decided by the total mass and the
first moment of the initial data. The correction term J is derived from the following procedure.
By the Duhamel formular, (1) is represented by

(6) u(t) = P (t) ∗ u0 +
∫ t

0
P (t − s) ∗ ∇ · (u∇(−∆)−1u)(s)ds.

On the nonlinear term, we renormalize u to MuP . Then we obtain M2
uJ(t). The proof of

theorems are based on the Lp-Lq estimate for P (t) ∗ ϕ. For the proof, we prepare the following
proposition.

Proposition 3. Let n ≥ 2, θ = 1 and the solution u of (1) satisfy (3) and (4). Then there exist
positive constants C and T such that

(7)
∥∥(−∆)1/4u(t)

∥∥
L2(Rn)

≤ Ct−1/2(1 + t)−n/2

holds for any t ≥ T .

This proposition is shown by the energy method.
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