Transverse instability for a nonlinear Schrödinger equation and the stability for a bifurcation point

Yohei Yamazaki Kyoto University

We consider the following nonlinear Schrödinger equation:

$$i\partial_t u = -\Delta u - |u|^{p-1}u, \quad (t, x, y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{T}_L,$$
 (1)

where p > 1 and u = u(t, x, y) is an unknown complex-valued function for $t \in \mathbb{R}$, $x \in \mathbb{R}$ and $y \in \mathbb{T}_L$. Here, $\mathbb{T}_L = \mathbb{R}/2\pi L\mathbb{Z}$ and L > 0. Takaoka-Tzvetkov [6] showed by the Strichartz estimate that the Cauchy problem of (1) is locally well-posed in H^1 . In this talk, we consider the stability for standing waves of (1).

By a standing wave, we mean a non-trivial solution of (1) with the form $u(t, x, y) = e^{i\omega t} \varphi(x, y)$, where $\omega > 0$ and $\varphi \in H^1(\mathbb{R} \times \mathbb{T}_L)$ is a solution of

$$-\Delta \varphi + \omega \varphi - |\varphi|^{p-1} \varphi = 0, \quad (x, y) \in \mathbb{R} \times \mathbb{T}_L. \tag{2}$$

Next, we define the (orbital) stability for standing waves of (1).

Definition 1. We say that the standing wave $e^{i\omega t}\varphi$ is stable in H^1 if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for all $u_0 \in H^1_{sym}(\mathbb{R} \times \mathbb{T}_L)$ with $||u_0 - \varphi||_{H^1} < \delta$, the solution u(t) of (1) with the initial data $u(0) = u_0$ exists globally in time and satisfies

$$\sup_{t>0} \inf_{\theta\in\mathbb{R}} \left\| u(t) - e^{i\theta} \varphi \right\|_{H^1} < \varepsilon,$$

Where

$$H^s_{sym}(\mathbb{R} \times \mathbb{T}_L) := \{ u \in H^s(\mathbb{R} \times \mathbb{T}_L) : u(x,y) = u(x,-y) = u(-x,y), (x,y) \in \mathbb{R} \times [-\pi L, \pi L] \}.$$

Otherwise, we say the standing wave $e^{i\omega t}\varphi$ is unstable in H^1 .

Let the function φ_{ω} be the positive symmetric solution of

$$-\partial_x^2 \varphi + \omega \varphi - |\varphi|^{p-1} \varphi = 0, \quad x \in \mathbb{R}.$$

Then, $e^{i\omega t}\varphi_{\omega}$ is a standing wave of the nonlinear Schrödinger equation on \mathbb{R} :

$$i\partial_t u = -\Delta u - |u|^{p-1}u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}.$$

We define

$$e^{i\omega t}\tilde{\varphi}(x,y) := e^{i\omega t}\varphi(x), \quad (t,x,y) \in \mathbb{R} \times \mathbb{R} \times \mathbb{T}_L.$$

Then, $e^{i\omega t}\varphi_{\omega}$ is a standing wave of (1) and we call $e^{i\omega t}\tilde{\varphi}_{\omega}$ a line standing wave.

In [1], Cazenave and Lions showed that the standing wave $e^{i\omega t}\varphi_{\omega}$ of the nonlinear Schrödinger equation on \mathbb{R} is stable for $1 . However, in some case a line standing wave <math>e^{i\omega t}\tilde{\varphi}_{\omega}$ is unstable for 1 . The following transverse instability results for the line standing wave was proved in Rousset-Tzvetkov [5] for <math>p = 3 and Y. [7] for 1 . Let

$$L_{\omega,p} = \frac{2}{\sqrt{(p-1)(p+3)\omega}}.$$
(3)

Theorem 1. Let $\omega > 0$ and 1 .

- (i) If $0 < L < L_{\omega,p}$, then the line standing wave $e^{i\omega t} \tilde{\varphi}_{\omega}$ is stable.
- (ii) If $L > L_{\omega,p}$, then the line standing wave $e^{i\omega t}\tilde{\varphi}_{\omega}$ is unstable.

Then, we farther consider the stability for the line standing wave in the case $L = L_{\omega,p}$. We can show (i) of Theorem 1 by the Lyapunov functional method in Grillakis-Shatah-Strauss [2]. Moreover, to prove (ii) of Theorem 1, they used the linear instability for the linearized equation around the standing wave $e^{i\omega t}\tilde{\varphi}_{\omega}$. In the case $L = L_{\omega,p}$, since the linearized operator around $e^{i\omega t}\tilde{\varphi}_{\omega}$ is degenerate, we can not apply the method by [2] or the argument for the proof of Theorem 1.

In this talk, we show the following stability result by applying the bifurcation result and the stability argument in Maeda [3] and Ohta [4].

Theorem 2. Let $\omega > 0$ and $L = L_{\omega,p}$. There exist $2 \le p_1 < p_2 < 3$ with the following properties.

- (i) If $2 , then the standing wave <math>e^{i\omega t}\tilde{\varphi}_{\omega}$ is stable.
- (ii) If $p > p_2$, then the standing wave $e^{i\omega t}\tilde{\varphi}_{\omega}$ is unstable.

References

- [1] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549-561.
- [2] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. A 74 (1987), no. 1, 160-197.
- [3] M. Maeda, Stability of bound states of Hamiltonian PDEs in the degenerate cases, J. Funct. Anal. **263** (2012), no. 2, 511-528.
- [4] M. Ohta, Instability of bound states for abstract nonlinear Schrödinger equations, J. Funct. Anal. **261** (2011), no. 1, 90-110.
- [5] F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. I. Poincaré-AN **26** (2009) 477-496.
- [6] H. Takaoka and N. Tzvetkov, On 2D nonlinear Schrödinger equations with Data on $\mathbb{R} \times \mathbb{T}$, J. Funct. Anal. **182** (2001) 427-442.
- [7] Y. Yamazaki, Transverse instability for a system of nonlinear Schrödinger equations, preprint.