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Set I := [0, T ]. Let {A(t); t ∈ I} be a family of closed linear operators in a complex
Hilbert space X and {B(t); t ∈ I} a family of positive-definite selfadjoint operators in
X. Then we consider the abstract Cauchy problem for linear evolution equations of the
form

(ACP)

{
B(t)(d/dt)u(t) + A(t)u(t) = f(t), t ∈ I,

u(0) = u0.

Here the initial value u0 is selected as in Theorem 2 (see below).
First we introduce our assumption on {B(t); t ∈ I}.

Assumption on {B(t)}. The family {B(t)} satisfies the following three conditions:

(B1) For t ∈ I, B(t) is positive-definite selfadjoint in X with

∥w∥Xt := ∥B(t)w∥ ≥ ∥w∥ for w ∈ Xt := D(B(t)), t ∈ I.

(B2) For t ∈ I, X0 = Xt and B(·) ∈ C∗(I;L(X0, X)), where the subscript ∗ is used to
refer the strong operator topology in L(X0, X). (for this notation see Kato [3]).

(B3) There exists a nonnegative function γ ∈ L1(I) such that

∣∣∥w∥Xt − ∥w∥Xs

∣∣ ≤ ∣∣∣∫ t

s

γ(r) dr
∣∣∣∥w∥Xs , w ∈ X0, t, s ∈ I.

To introduce our assumption on {A(t); t ∈ I} we need one more family {S(t); t ∈ I}
of auxiliary operators in X.

Assumption on {S(t)}. Let {S(t)} be a family of closed linear operators satisfying the
following four conditions:

(S1) For t ∈ I, B(t)S(t) is also positive-definite selfadjoint in X with

Re (Bn(t)u, S(t)u) ≥ ∥Bn(t)u∥2, u ∈ D(S(t)), t ∈ I, n ∈ N,

where Bn(t) := B(t)(1 + n−1B(t))−1 (n ∈ N) is the Yosida approximation to B(t).

Then Yt := D((B(t)S(t))1/2) forms a Hilbert space with norm

∥u∥Yt := ∥(B(t)S(t))1/2u∥.

It should be noted that conditions (B1) and (S1) yield that

D(B(t)S(t)) ⊂ D(S(t)) ⊂ Yt = D((B(t)S(t))1/2) ⊂ Xt = D(B(t))
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and
(B(t)u, S(t)u) ≥ ∥B(t)u∥2, u ∈ D(S(t)) ⊂ D(B(t)), t ∈ I.

(S2) Let t ∈ I and g ∈ X. Then for any ε ∈ (0, 1] there exists uε(t) ∈ D(S(t)) such that

(1) B(t)uε(t) + εS(t)uε(t) = g.

It follows from conditions (B1), (S1) and (S2) that {B(t)+εS(t); ε ∈ (0, 1]} is a family
of semi-Fredholm operators in X (see Kato [2, Section IV.5]). Namely, B(t) + εS(t)
is closed and invertible with closed range. Thus the index of B(t) + εS(t) is constant for
ε ∈ (0, 1]. Therefore it suffices to assume that (1) holds for some ε0 ∈ (0, 1].

(S3) For t ∈ I, Y0 = Yt and (B(·)S(·))1/2 ∈ C∗(I;L(Y0, X)).

(S4) There exists a nonnegative function σ ∈ L1(I) such that σ ≥ γ and

∣∣∥v∥Yt − ∥v∥Ys
∣∣ ≤ ∣∣∣∫ t

s

σ(r) dr
∣∣∣∥v∥Ys , v ∈ Y0, t, s ∈ I.

Remark 1. The condition (B3) and (S4) imply that ∥w∥t and ∥u∥Yt are (uniformly)
absolute continuous in t ∈ I, respectively. These conditions are equivalent to the following
conditions

(B3)′ There exists a nonnegative function γ′ ∈ L1(I) such that

∥w∥Xt ≤ exp
(∣∣∣∫ t

s

γ′(r) dr
∣∣∣)∥w∥Xs , w ∈ X0, t, s ∈ I.

(S4)′ There exists a nonnegative function σ′ ∈ L1(I) such that σ′ ≥ γ′ and

∥v∥Yt ≤ exp
(∣∣∣∫ t

s

σ′(r) dr
∣∣∣)∥v∥Ys , v ∈ Y0, t, s ∈ I.

This type of expression are found in Kato [3].

Let {B(t)} and {S(t)} be as defined above. Then we may introduce the following

Assumption on {A(t)}. The family {A(t)} satisfies the following four conditions:

(A1) Yt ⊂ D(A(t)) ⊂ Xt, t ∈ I.

(A2) There exists a constant α ≥ 0 such that

|Re (A(t)v,B(t)v)| ≤ α∥B(t)v∥2, v ∈ D(A(t)), t ∈ I.

(A3) There exists a constant β ≥ α such that for u ∈ D(S(t)) ⊂ D((B(t)S(t))1/2),

|Re (A(t)u, S(t)u)| ≤ β(B(t)u, S(t)u) = β∥(B(t)S(t))1/2u∥2, t ∈ I.

(A4) A(·) ∈ C∗(I;L(Y0, X)).

If {A(t)} satisfies conditions (A1)–(A4), then {−A(t)} also does. This is the reason
why we employ the term, hyperbolic type, when we refer our evolution equations.

Theorem 1. Suppose that Assumptions on {B(t)}, {A(t)} and {S(t)} are satisfied. Then
there exists a unique evolution operator {U(t, s); (t, s) ∈ ∆+} for (ACP), where ∆+ :=
{(t, s); 0 ≤ s ≤ t ≤ T}, having the following properties :
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(i) U(t, s)X0 ⊂ X0 and U(·, ·) is strongly continuous on ∆+ to L(X0), with

∥U(t, s)∥L(Xs,Xt)
≤ exp

(∫ t

s

α̃(r) dr
)
, (t, s) ∈ ∆+,

∥U(t, s)∥L(X0) ≤ exp
(
2

∫ s

0

γ(r) dr
)
exp

(∫ t

s

(
α̃(r) + γ(r)

)
dr
)
, (t, s) ∈ ∆+,

where α̃(r) := α + γ(r).

(ii) U(t, r)U(r, s) = U(t, s) on ∆+ and U(s, s) = 1 (the identity on X0).

(iii) U(t, s)Y0 ⊂ Y0 and U(·, ·) is strongly continuous on ∆+ to L(Y0), with

∥U(t, s)∥L(Ys,Yt) ≤ exp
(∫ t

s

β̃(r) dr
)
, (t, s) ∈ ∆+,

∥U(t, s)∥L(Y0) ≤ exp
(
2

∫ s

0

σ(r) dr
)
exp

(∫ t

s

(
β̃(r) + σ(r)

)
dr
)
, (t, s) ∈ ∆+,

where β̃(r) := β + σ(r).

Furthermore, let v ∈ Y0. Then U(· , ·)v ∈ C1(∆+;X0), with

(iv) B(t)(∂/∂t)U(t, s)v = −A(t)U(t, s)v, (t, s) ∈ ∆+, and

(v) (∂/∂s)U(t, s)v = U(t, s)B(s)−1A(s)v, (t, s) ∈ ∆+.

The equation in (ACP) is naturally interpreted if the solution has an additional prop-
erty u(·) ∈ C(I;Y0). In fact, it is guaranteed by condition (A1) that u(t) ∈ Y0 ⊂ D(A(t))
for every t ∈ I.

Theorem 2. Let {U(t, s)} be the evolution operator for (ACP) as in Theorem 1 above.
For u0 ∈ Y0 and f(·) ∈ C(I;X) satisfying B(·)−1f(·) ∈ L1(I;Y0), define u(·) as

u(t) := U(t, 0)u0 +

∫ t

0

U(t, s)B(s)−1f(s) ds.

Then (ACP) has a unique (classical) solution

u(·) ∈ C1(I;X0) ∩ C(I;Y0).

Remark 2. Theorems 1 and 2 are nothing but generalizations of the corresponding
theorems in [4].
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