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Set I :=[0,T]. Let {A(t); t € I} be a family of closed linear operators in a complex
Hilbert space X and {B(t); t € I} a family of positive-definite selfadjoint operators in
X. Then we consider the abstract Cauchy problem for linear evolution equations of the
form

(ACP) {B (t)(d/dtyu(t) + At)u(t) = f(t), tel,

u(0) = up.
Here the initial value g is selected as in Theorem 2 (see below).
First we introduce our assumption on {B(t); ¢t € I}.
Assumption on {B(¢)}. The family {B(t)} satisfies the following three conditions:
(B1) For t € I, B(t) is positive-definite selfadjoint in X with
|w|x, == [|B(t)w| > [|w] forw e X;:= D(B(t)), t € I.

(B2) For t € I, Xy = X; and B(:) € C.(I; L(Xo, X)), where the subscript . is used to
refer the strong operator topology in L(Xj, X). (for this notation see Kato [3]).

(B3) There exists a nonnegative function v € L'(I) such that

¢
/y(r)dr‘HwHXS, w e X, t,s € 1.

[llwllx, = llwllx,| <

To introduce our assumption on {A(t); ¢ € I} we need one more family {S(¢); t € I}
of auxiliary operators in X.

Assumption on {S(¢)}. Let {S(t)} be a family of closed linear operators satisfying the
following four conditions:

(S1) For t € I, B(t)S(t) is also positive-definite selfadjoint in X with
Re (B, (t)u, S(t)u) > | Ba(t)ull®, we D(S()), t€ I, neN,

where B,,(t) := B(t)(1+n"'B(t))™! (n € N) is the Yosida approximation to B(t).
Then Y; := D((B(t)S(t))"/?) forms a Hilbert space with norm

lully, := 1(B(#)S(#))"/?ul.
It should be noted that conditions (B1) and (S1) yield that
D(B()S(t)) ¢ D(S(t)) € Yy = D((B(t)S(t)'*) € X, = D(B(t))
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and
(B(t)u, S(t)u) > ||B(t)u||2, uw € D(S(t)) € D(B(t)), tel.

(S2) Let t € I and g € X. Then for any ¢ € (0, 1] there exists u.(t) € D(S(t)) such that
(1) B(t)ue(t) +eS(t)ue(t) = g.

It follows from conditions (B1), (S1) and (S2) that { B(t)+eS(¢); € € (0,1]} is a family
of semi-Fredholm operators in X (see Kato [2, Section IV.5]). Namely, B(t) + S(t)
is closed and invertible with closed range. Thus the index of B(t) + eS(¢) is constant for
e € (0,1]. Therefore it suffices to assume that (1) holds for some ¢, € (0, 1].
(S3) Fort € I, Yy = Y; and (B(-)S(-)Y? € C.(I; L(Yy, X)).
(S4) There exists a nonnegative function o € L*(I) such that o > v and

t
lolbs = oll| <[ [ o) drflols, e Yo, tser.
S

Remark 1. The condition (B3) and (S4) imply that ||wl|; and |jully, are (uniformly)
absolute continuous in ¢ € I, respectively. These conditions are equivalent to the following
conditions

(B3)’ There exists a nonnegative function 7' € L'(I) such that

t
/ v (r) er |lw||xs, w € Xy, t,s €1

lwllx, < exp(

(S4)" There exists a nonnegative function ¢’ € L'(I) such that ¢/ >+ and

t
/ o'y dr| )il veYs tsel

vl < exp(

This type of expression are found in Kato [3].

Let {B(t)} and {S(¢)} be as defined above. Then we may introduce the following
Assumption on {A(¢)}. The family {A(t)} satisfies the following four conditions:
(A1) Y; C D(A(t)) C Xy, tel.

(A2) There exists a constant a > 0 such that

[Re (A(t)v, B(t)v)| < o||B(t)v|®>, v e D(A(t)), tel.
(A3) There exists a constant 3 > « such that for u € D(S(t)) C D((B(t)S(t))?),
[Re (A(t)u, S(t)u)| < B(B(t)u, S(t)u) = Bl(BOSEH)*ull?, tel.

(Ad) A() € C.(I; L(Yy, X)).

If {A(t)} satisfies conditions (A1)-(A4), then {—A(¢)} also does. This is the reason
why we employ the term, hyperbolic type, when we refer our evolution equations.

Theorem 1. Suppose that Assumptions on {B(t)}, {A(t)} and {S(t)} are satisfied. Then
there exists a unique evolution operator {U(t,s);(t,s) € Ay} for (ACP), where Ay =
{(t,s); 0<s<t<T}, having the following properties:



(i) U(t,s)Xo C Xo and U(-,-) is strongly continuous on Ay to L(Xy), with

t
UG5 owny < exp( [ @lrar). (ts) € A
t

U6z < exp(2 [ ) i) exp( [ @) +a)dr). (ks) € A

where a(r) 1= o+ y(r).
(ii) U(t,r)U(r,s) =Ul(t,s) on Ay and U(s,s) =1 (the identity on X).
(iii) U(t,s)Yo C Yo and U(-,-) is strongly continuous on Ay to L(Yy), with

t~
||U(t,s)||L(yS%) < exp (/ B(r) dr), (t,s) € Ay,
¢

06wy < exp (2 [ ot ar)esp ([ (B + o) ar). (s € As,
where B(r) := 8+ o(r).
Furthermore, let v € Yy. Then U(-,-)v € C*(A4; Xy), with
(iv) B(t)(0/ot)U(t,s)v = —A(t)U(t,s)v, (t,s) € Ay, and
(v) (0/0s)U(t,s)v =Ul(t,s)B(s)tA(s)v, (t,5) € AL.
The equation in (ACP) is naturally interpreted if the solution has an additional prop-

erty u(-) € C(I;Yp). In fact, it is guaranteed by condition (A1) that u(t) € Yy C D(A(t))
for every t € I.

Theorem 2. Let {U(t,s)} be the evolution operator for (ACP) as in Theorem 1 above.
For ug € Yy and f(-) € C(I; X) satisfying B(-)"'f(-) € L(I;Yy), define u(-) as

u(t) == U(t,0)uo —i—/o Ul(t,s)B(s) ™ f(s) ds.

Then (ACP) has a unique (classical) solution
u(-) € CY(I; Xo) N C(I; Yp).

Remark 2. Theorems 1 and 2 are nothing but generalizations of the corresponding
theorems in [4].
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