Dynamical behavior of integral equations in epidemiology

Yoichi Enatsu

Department of Mathematical Information Science, Faculty of Science, Tokyo University of Science

Due to various environmental changes such as diversity of transport network and a rapid increase in population, disease transission has been considered as a serious threat to global population despite medical development. In view of mathematical biology, the transmission models have played a crucial role to predict and theoretically understand the eventual disease prevalence in the host population. In terms of Volterra-type integral equations, structured population models have widely been formulated to investigate the effect of **differently aged individuals** for infectious disease process (see, e.g., Diekmann et al. [1]). One of the structured models is formulated by **age of infection**, denoting the time that has elapsed since the infection has started.

We consider the asymptotic behavior of the following epidemiological model:

$$\begin{cases} \frac{dS(t)}{dt} = B - S(t) \int_0^{+\infty} \beta(a)b(t-a)e^{-(\mu+\eta+\gamma)a} \, da - \mu S(t) + \delta R(t), \\ b(t) = S(t) \int_0^{+\infty} \beta(a)b(t-a)e^{-(\mu+\eta+\gamma)a} \, da, \\ \frac{dR(t)}{dt} = \gamma \int_0^{+\infty} b(t-a)e^{-(\mu+\eta+\gamma)a} \, da - (\mu+\delta)R(t) \end{cases}$$
(*)

with the initial conditions $(S(0), b(\theta), R(0)) = (s, \phi(\theta), r)$ for $\theta \leq 0$. Let \mathbb{R}_+ (resp. \mathbb{R}_-) denote the set of nonnegative (resp. nonpositive) real numbers. We assume that $(s, \phi, r) \in \mathbb{R}_+ \times L^1_\rho(\mathbb{R}_-; \mathbb{R}_+) \times \mathbb{R}_+$, the space consists of all equivalence classes of measurable functions $\phi : \mathbb{R}_- \longrightarrow \mathbb{R}_+$ such that $\|\phi\|_{L^1_\rho} = \int_0^{+\infty} e^{-\rho a} |\phi(-a)| da < +\infty$. The meaning of the variables and coefficients is as follows.

S(t): number of susceptible individuals at time t

- b(t): an incidence rate (number of newly infected individuals) at time t
- R(t): number of recovered individuals at time t
- $\mathcal{F}(a)$: a survival rate to be infected until his or her infection-age becomes a with $\mathcal{F}(0) = 1$
- $\beta(a)$: an age-specific transmission coefficient of infected individual at age a
 - B: a birth rate of susceptible individuals
 - μ : a natural mortality rate
 - η : a disease-induced death rate
 - γ : a recovery rate
 - δ : a rate of immunity loss of recovered individuals

Under the condition that $\beta \in L^{\infty}(\mathbb{R}_+)$, the basic reproduction number R_0 (the average number of secondary infections by a single infective individual), given as the dominant eigenvalue of a positive linear operator, is calculated as

$$R_0 = B \int_0^{+\infty} \beta(a) \mathcal{F}(a) \ da.$$

We first establish asymptotic staility of an endemic equilibrium of the model (*) and offer a several open problems when the rate of immunity loss δ is positive for the case $R_0 > 1$ [2, Section 3]. Furthermore, the reformulation method from the model (*) into a system of DDEs (delay differential equations) is introduced when β is a function of bounded variation on \mathbb{R}_+ [2, Section 4].

References

- O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J.A.J. Metz and H.R. Thieme, On the formulation and analysis of general deterministic structured population models: II. Nonlinear theory, J. Math. Biol. 43 (2001) 157-189.
- [2] Y. Nakata, Y. Enatsu, H. Inaba, T. Kuniya, Y. Muroya and Y. Takeuchi, Stability of epidemic models with waning immunity, SUT Journal of Mathematics 50 (2014) 405-426.