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In this talk we consider the following partial difference equation:

f t+1
n⃗ =

gtn⃗
{1− αδ(gtn⃗)

α}1/α
, (dSH)

where t ∈ Z≥0, n⃗ ∈ Zd, α, δ > 0,

gtn⃗ :=
d∑

k=1

f t
n⃗+e⃗k

+ f t
n⃗−e⃗k

2d
,

and e⃗k ∈ Zd is a unit vector whose k–th component is 1. From (dSH), we obtain

f t+1
n⃗ − f t

n⃗

δ
=

d∑
k=1

f t
n⃗+e⃗k

− 2f t
n⃗ + f t

n⃗−e⃗k

2dδ
+ (gtn⃗)

1+α +O(δ) (δ → 0).

Let ξ :=
√
2dδ, T = δt, X⃗ = ξn⃗. Taking a limit: δ → +0, we obtain the following

semilinear heat equation:
∂f

∂T
= ∆f + f1+α, (SH)

where f := f(T, X⃗), T ≥ 0, X⃗ ∈ Rd and ∆ is a d–dimensional Laplacian. From
this property, we call (dSH) discrete semilinear heat equation in this talk. There
are solutions for (SH) which are called blow–up solution as follow.

Definition 1 If there exists positive number Tb such that

lim sup
T→Tb−0

∥f(T, ·)∥L∞ = +∞,

where ∥f(T, ·)∥L∞ := sup
X⃗∈Rd

|f(T, X⃗)|, we call f which is a solution for (SH) blow–up

solution and Tb blow–up time.

Moreover, Fujita, Weissler et. al. proved the following theorem [1–4].
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Theorem 1 Consider Cauchy problem of (SH):
∂f

∂T
= ∆f + f1+α,

f(0, X⃗) = a(X⃗).

If the initial condition a(X⃗) is smooth and satisfies a(X⃗) ≥ 0, ̸≡ 0, following state-
ments hold.

1. If 0 < α ≤ 2/d, there exists a finite time Tb > 0 and the solution for (SH)
blows up at time Tb.

2. If 2/d < α, the solution for (SH) does not blow up at any finite time for

sufficiently small initial value a(X⃗).

In contrast, since we obtain

fs+1
n⃗ =

gsn⃗
{1− αδ(gsn⃗)

α}1/α
gs
n⃗→(αδ)−1/α−0−−−−−−−−−−−→ +∞

from (dSH), there are similar solutions for (dSH) to blow–up solutions for (SH). We
also call such solutions defined as follow blow–up solution.

Definition 2 If t < t0 ∈ Z>0, gtn⃗ < (αδ)−1/α is satisfied for all n⃗ ∈ Zd and if
t = t0, there exists n⃗0 ∈ Zd and gt0n⃗0

≥ (αδ)−1/α is satisfied, i.e. 1− αδ(gt0n⃗0
)α ≤ 0,

then we say the solution for (dSH) blows up at time t0.

Furthermore, similar theorem to that of (SH) holds [5]. The following theorem is
main theorem of this talk.

Theorem 2 Consider Cauchy problem of (dSH):f t+1
n⃗ =

gtn⃗
{1− αδ(gtn⃗)

α}1/α
,

f0
n⃗ = an⃗.

If the initial condition an⃗ satisfies an⃗ ≥ 0, ̸≡ 0, following statements hold.

1. If 0 < α ≤ 2/d, there exists a finite time tb > 0 and the solution for (dSH)
blows up at time tb.

2. If 2/d < α, the solution for (dSH) does not blow up at any finite time for
sufficiently small initial value an⃗.
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