特異な感応性関数をもつ準線形放物・放物型 Keller-Segel 系の解の有界性*

西山 千尋 (東京理大・理 M2)

次の準線形 Keller-Segel 系の初期値境界値問題 (KS) について考える:

(KS)
$$\begin{cases} \frac{\partial u}{\partial t} = \nabla \cdot (D(u)\nabla u) - \nabla \cdot (S(u)\chi(v)\nabla v) & \text{in } \Omega \times (0,\infty), \\ \frac{\partial v}{\partial t} = \Delta v - v + u & \text{in } \Omega \times (0,\infty), \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 & \text{on } \partial\Omega \times (0,\infty), \\ u(x,0) = u_0(x), \ v(x,0) = v_0(x), & x \in \Omega. \end{cases}$$

ここで $\Omega \subset \mathbb{R}^N (N \in \mathbb{N})$ は滑らかな境界 $\partial \Omega$ をもつ有界領域とし、初期値 u_0 は非負値関数、 v_0 は正値関数とする. また、D、S、 χ は以下を満たすと仮定する:

- (1) $D, S \in C^2([0, \infty)), \quad S(0) = 0, \quad S \ge 0,$
- (2) $K_0(u+1)^{m-1} \le D(u) \le K_1(u+1)^{M-1} \quad (\exists m, M \in \mathbb{R} \quad \exists K_0, K_1 > 0 \quad \forall u \ge 0),$
- (3) $S(u)/D(u) \le K(u+1)^{\alpha} \qquad (\exists \alpha < 2/N \quad \exists K > 0 \qquad \forall u \ge 0),$

先行研究では、問題 (KS) の時間大域解の存在と有界性について以下の結果が知られている: シグナル非依存な感応性関数をもつ場合 $(\chi(v)\equiv 1)$

(1),(2),(3) を満たすときの、時間大域解の存在と有界性 (Tao-Winkler [3], Ishida-Seki-Yokota [2]). 線形拡散の場合 $(D(u)\equiv 1,\,S(u)=\chi_0 u,\,\chi(v)=1/v)$

 $0 < \chi_0 < \sqrt{2/N}$ のときの、時間大域解の存在と有界性 (Fujie [1]).

本研究では、Fujie [1] で得られた時間に一様なvの下からの評価を用いることで、シグナル依存型感応性関数と非線形拡散の両方をもつ (KS) に対して時間大域解の存在と有界性を得た.

定理

 $(u_0,v_0)\in C^2(\overline{\Omega})\times C^1(\overline{\Omega})$ とする. また, D, S, χ は (1), (2), (3), (4) を満たすとする. このとき, (KS) の時間大域的古典解

$$u \in C(\overline{\Omega} \times [0, \infty)) \cap C^{2,1}(\overline{\Omega} \times (0, \infty)), \quad v \in C(\overline{\Omega} \times [0, \infty)) \cap C^{2,1}(\overline{\Omega} \times (0, \infty))$$

が一意的に存在し、さらにその解は有界である:

ある定数
$$C>0$$
 が存在し、 $\|u(\cdot,t)\|_{L^\infty(\Omega)} \leq C$ for all $t>0$.

ただし, $C^{2,1}$ の 2 は x についての微分可能回数, 1 は t についての微分可能回数を表す.

参考文献

- [1] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl. 424 (2015), 675–684.
- [2] S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations 256 (2014), 2993–3010.
- [3] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), 692–715.

^{*}本講演は横田智巳氏 (東京理大・理) と藤江健太郎氏 (東京理大・理 D1) との共同研究に基づくものである.