Scale invariant elliptic operators with singular coefficients^{*}

側島 基宏[†] (University of Salento)

1. Introduction

In this talk we deal with generation of analytic semigroups on $L^p = L^p(\mathbb{R}^N)$ by elliptic operators of the form

$$L = |x|^{\alpha} \Delta + c |x|^{\alpha-2} x \cdot \nabla - b |x|^{\alpha-2}, \quad x \in \mathbb{R}^N \setminus \{0\},$$

where $c, b \in \mathbb{R}$ and $\alpha \in \mathbb{R}$ with $\alpha \neq 2$ are fixed constants. In the case N = 1, we consider L in $\mathbb{R}_+ = (0, \infty)$ on $L^p(\mathbb{R}_+)$.

For the case $\alpha = c = 0$, L forms Schrödinger operators with inverse-square potentials which has been studied in many papers. In [3] Okazawa gave the necessary and sufficient condition on generation of analytic **contraction** semigroups on L^p by L_{min} (the closure of L defined on $C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$, see also Notations below).

The purpose of this talk is to give the necessary and sufficient condition on generation of analytic, **bounded** and positive semigroups on $L^p(\mathbb{R}^N)$ by suitable realizations of L with $\alpha, c, b \in \mathbb{R}$ and 1 .

Notations

- L_{min} : the closure of L defined on $C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$,
- L_{max} : L in L^p in the sense of distributions on $\mathbb{R}^N \setminus \{0\}$.

2. Result

Before stating our result, we introduce a quadratic polynomial which is closely related to Euler's indicial equation for $|x|^{2-\alpha}L[u(r)] = 0$ (r = |x|):

$$f(s) = b + s(N - 2 + c - s), \quad s \in \mathbb{R}$$

and we denote its roots by s_1, s_2 $(s_1 \leq s_2)$ when $D_c := b + \left(\frac{N-2+c}{2}\right)^2 \geq 0$, that is,

$$s_1 = \frac{N-2+c}{2} - \sqrt{b + \left(\frac{N-2+c}{2}\right)^2}, \quad s_2 = \frac{N-2+c}{2} + \sqrt{b + \left(\frac{N-2+c}{2}\right)^2}.$$

In fact $|x|^{-s_1}$ and $|x|^{-s_2}$ are both radial solutions to Lu = 0.

^{*}This is a joint work with Professors Giorgio Metafune and Chiara Spina (University of Salento) and Professor Noboru Okazawa (Tokyo University of Science).

[†]e-mail: msobajima1984@gmail.com

Now we state our result on analytic semigroups generated by L.

Theorem 1 ([2]). Let $1 , <math>\alpha \neq 2$, $D_c = b + (\frac{N-2+c}{2})^2 > 0$. Then a suitable realization L_{int} of L in L^p (satisfying $L_{min} \subset L_{int} \subset L_{max}$) generates an analytic C_0 -semigroup on L^p if and only if

$$s_1 + \min\{0, 2 - \alpha\} < \frac{N}{p} < s_2 + \max\{0, 2 - \alpha\}.$$

In this case the generated analytic C_0 -semigroup is bounded and positive. The domain of L_{int} is given by

$$D(L_{int}) = \{ u \in D(L_{max}) ; |x|^{\theta(\alpha-2)} u \in L^p \},\$$

where $\theta \in (0, 1]$ satisfies

$$s_1 + \min\{0, 2 - \alpha\} < \frac{N}{p} + \theta(\alpha - 2) < s_2 + \max\{0, 2 - \alpha\}.$$

Theorem 2 ([2]). Let $1 , <math>\alpha \neq 2$, $D_c = b + (\frac{N-2+c}{2})^2 = 0$ and $s_0 = \frac{N-2+c}{2}$. Then a suitable realization L_{int} of L in L^p (satisfying $L_{min} \subset L_{int} \subset L_{max}$) generates an analytic C_0 -semigroup in L^p if and only if

$$s_0 + \min\{0, 2 - \alpha\} < \frac{N}{p} < s_0 + \max\{0, 2 - \alpha\}.$$

In this case the generated analytic C_0 -semigroup is bounded and positive. The domain of L_{int} is given by

$$D(L_{int}) = \begin{cases} \left\{ u \in D(L_{max}) \; ; \; \chi_{\{|x| < 1/2\}} |x|^{\theta_0(\alpha - 2)} |\log |x||^{-2/p} u \in L^p \right\} & \text{if } \alpha < 2, \\ \left\{ u \in D(L_{max}) \; ; \; \chi_{\{|x| > 1/2\}} |x|^{\theta_0(\alpha - 2)} |\log |x||^{-2/p} u \in L^p \right\} & \text{if } \alpha > 2, \end{cases}$$

where $\theta_0 \in (0, 1)$ satisfies

$$s_0 = \frac{N}{p} + \theta_0(\alpha - 2).$$

Remark 1. In the case $\alpha = 2$, L_{min} generates an analytic semigroup on L^p and coincides with L_{max} for every $c, b \in \mathbb{R}$ and 1 . In addition, the generated analyticsemigroup by <math>L is bounded in a sector if and only if $s_1 < N/p < s_2$.

References

- P. Baras, J.A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121–139.
- [2] G. Metafune, N. Okazawa, M. Sobajima, C. Spina, *Scale invariant elliptic operators* with singular coefficients, preprint (arXiv:1405.5657).
- [3] N. Okazawa, L^p-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math. 22 (1996), 199–239.