On the asymptotic growth rate of the sum of p-adic-valued i.i.d.

Kumi Yasuda Faculty of Business and Commerce, Keio University

1 Introduction

For a fixed prime integer p, the p-adic norm of an integer z is defined by $|z|_p = p^{-m}$ if $z \neq 0$ and m is the maximum integer such that p^m divides z, and by $|0|_p = 0$. The p-adic norm is extended to rational numbers in a natural manner;

$$\left|\frac{z}{z'}\right|_p = \frac{|z|_p}{|z'|_p}, \ z, z' \in \mathbf{Z}.$$

The *p*-adic field \mathbf{Q}_p is the completion of \mathbf{Q} relative to the topology induced by the *p*-adic norm, and identified with the set of formal *p*-power series ;

$$\mathbf{Q}_p = \left\{ \sum_{i=-m}^{\infty} a_i p^i \mid a_i \in \{0, 1, \dots, p-1\}, a_{-m} \neq 0 \right\} \cup \{0\},\$$

with *p*-adic norm given by $\left|\sum_{i=-m}^{\infty} a_i p^i\right|_p = p^m$ if $a_{-m} \neq 0$. The addition and multiplication rules are defined similarly as those of polynomials.

If we fix a non-trivial character φ_1 of \mathbf{Q}_p , we can identify the additive group \mathbf{Q}_p with its character group \mathbf{Q}_p^* by the isomorphism

$$\mathbf{Q}_p \ni y \mapsto \varphi_y(\cdot) := \varphi_1(y \cdot \cdot) \in \mathbf{Q}_p^*.$$

Then we can consider the characteristic function of a probability measure μ on \mathbf{Q}_p ,

$$\hat{\mu}(y) = \int_{\mathbf{Q}_p} \varphi_y(x) \mu(dx), \ y \in \mathbf{Q}_p,$$

as a function on \mathbf{Q}_p .

2 Preceding results

We shall review some limit theorems concerning infinitely divisible distributions, semi-selfdecomposable distributions, and semistable laws on the p-adic field (some are given for more general spaces).

To start with, let X be a locally compact second countable abelian group.

Definition 1. A distribution μ on X is said to be **infinitely divisible**, if for every natural number n there exist a distribution μ_n on X and an element x_n of X such that $\mu = \mu_n^{*n} * \delta_{x_n}$.

Definition 2. A distribution ν on X is said to be **idempotent**, if $\nu = \nu * \nu$.

Proposition 1 ([6]). A distribution μ on X is infinitely divisible and has no non-degenerate idempotent factor, if and only if it is the weak limit of the law of the sum $x_0 + \sum_{i=1}^{k(n)} \xi_{ni}$, for some $x_0 \in X$ and some double sequence of random variables ξ_{ni} $(n \ge 1, 1 \le i \le k(n))$ on X which are independent in each row such that

- ξ_{ni} are infinitesimal,
- $\sup_n \sum_{i=1}^{k(n)} \left(1 \left\| \hat{\mathcal{L}}_{\xi_{ni}}(\varphi) \right\| \right) < \infty$ for any character φ of X,

where $\mathcal{L}_{\xi_{ni}}$ is the law of ξ_{ni} .

In case X has a field structure, we can consider semi-selfdecomposable distributions as a subclass of infinitely divisible distributions. Suppose X is a locally compact second countable topological field.

Definition 3. Let $a \in X$ be such that $\lim_{n\to\infty} a^n = 0$. A distribution μ on X is said to be *a*-semi-selfdecomposable, if there exists an infinitely divisible distribution ν on X with no non-degenerate idempotent factor, such that $\hat{\mu}(\varphi) = \hat{\mu}(\varphi_a)\hat{\nu}(\varphi)$ for any character φ of X, where $\varphi_a(\cdot) := \varphi(a \cdot)$.

Proposition 2 ([6]). A distribution μ on X is a-semi-selfdecomposable if and only if it is the weak limit of the law of the scaled sum $x_0 + a_n \sum_{i=1}^{k(n)} \xi_i$, for some $x_0 \in X$, some sequence of independent random variables ξ_i , a non-decreasing sequence k(n) of natural numbers, a sequence $a_n \in X$ with $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = a$, such that

• $a_n \xi_i$ are infinitesimal,

• $\sup_n \sum_{i=1}^{k(n)} \left(1 - \left\| \hat{\mathcal{L}}_{a_n \xi_i}(\varphi) \right\| \right) < \infty$ for any character φ of X.

Let us confine ourselves to the case $X = \mathbf{Q}_p$, and deal with a further subclass of distributions, the semistable laws.

Definition 4. For $\alpha > 0$, a distribution μ on \mathbf{Q}_p whose characteristic function is given by $\hat{\mu}(y) = \exp\left(-c|y|_p^{\alpha}\right)$ for some constant c > 0 is called an α -semistable law.

We can see semistable laws are characterized as weak limits of scaled sums of i.i.d. Let ξ_i , i = 1, 2, ..., be *p*-adic valued i.i.d. whose laws are rotationsymmetric, $T(p^n) = P(|\xi_i|_p \ge p^n)$, $n \in \mathbb{Z}$, be their tail probabilities, and denote $S_n = \sum_{i=1}^n \xi_i$ for $n \ge 1$.

Proposition 3 ([6]). A distribution μ on \mathbf{Q}_p is semistable if and only if it is the weak limit of the law of the scaled sum $p^n S_{k(n)}$ of some rotationsymmetric i.i.d. ξ_i and a non-decreasing sequence k(n) of natural numbers satisfying $\sup_n k(n)T(p^{n+l}) < \infty$ for any $l \in \mathbf{Z}$.

Proposition 4 ([6]). If the p-adic valued rotation-symmetric i.i.d. ξ_i have tail probabilities of the form $T(p^n) = p^{-\alpha n}L(n)$ for some $\alpha > 0$ and a function L(n) > 0 of $n \in \mathbb{Z}$ satisfying $\lim_{n\to\infty} \frac{L(n+1)}{L(n)} = 1$, then the law of the scaled sum $p^n S_{[N(n)]}$ weakly converges to an α -semistable law, where $N(n) = CT(p^n)^{-1}$ with any constant C.

3 Main results

Let us consider *p*-adic valued rotation-symmetric i.i.d. ξ_i , i = 1, 2, ..., subject to the conditions in Proposition 4. We can see the convergence of the scaled sum $p^n S_{[N(n)]}$ in Proposition 4 cannot be concluded in any stronger sense, such as the convergence in probability. In fact the scaled sum converges weakly with infinitely large amplitude.

Proposition 5. We have

$$\liminf_{n \to \infty} \left| p^n S_{[N(n)]} \right|_p = 0, \quad \limsup_{n \to \infty} \left| p^n S_{[N(n)]} \right|_p = +\infty, a.s.$$

Our aim is to find the true growth rate of $|S_{[N(n)]}|_p$, namely the critical scaling order of the sum $S_{[N(n)]}$ over (resp. under) which the lim sup of the norm of the scaled sum is 0 (resp. $+\infty$) almost surely.

Theorem 1. Let $\beta > 0$ and $c_n = [\beta \log n]$.

(i). If
$$\beta > \frac{1}{\alpha \log p}$$
, then $\limsup_{n \to \infty} \left| p^{n+c_n} S_{[N(n)]} \right|_p = 0$, a.s.
(ii). If $\beta < \frac{1}{\alpha \log p}$, then $\limsup_{n \to \infty} \left| p^{n+c_n} S_{[N(n)]} \right|_p = +\infty$, a.s.

In this theorem nothing is presented for the case $\beta = \frac{1}{\alpha \log p}$. We can see that, at the critical order $c_n = \left[\frac{\log n}{\alpha \log p}\right]$ the behavior of the scaled sum depends more sensitively to the asymptotics of the tail probabilities $T(p^n) = p^{-\alpha n}L(n)$ of the i.i.d. More precisely, the asymptotics of the scaled sum differs by the rate of the convergence $\frac{L(n+1)}{L(n)} \to 1$.

Theorem 2. Let
$$c_n = \left[\frac{\log n}{\alpha \log p}\right]$$
, and suppose $\frac{L(n+1)}{L(n)} = (\log n)^{-\gamma/\log n}$, $\gamma > 0$

(i). If $\gamma > \alpha \log p$, then $\limsup_{n \to \infty} \left| p^{n+c_n} S_{[N(n)]} \right|_p = 0$, a.s.

(*ii*). If $\gamma \leq \alpha \log p$, then $\limsup_{n \to \infty} \left| p^{n+c_n} S_{[N(n)]} \right|_p = +\infty$, a.s.

References

- Gnedenko, B.V., and Kolmogorov, A.N. : Limit Distributions for Sums of Independent Random Variables, Addison-Wesley (1968).
- [2] Ito, K. : An Introduction to Probability Theory, Cambridge University Press (1986).
- [3] Parthasarathy, K.R. : Probability Measures on Metric Spaces, AMS Chelsea publishing (2005).
- [4] Petrov, V.V. : Limit Theorems of Probability Theory, Oxford Science Publications (1995).
- [5] Yasuda, K. : On Infinitely Divisible Distributions on Locally Compact Abelian Groups, J. Theoret. Probab., 13, 635–657 (2000).
- [6] Yasuda, K. : On the asymptotic growth rate of the sum of p-adic-valued independent identically distributed random variables, Arab. J. Math. 3, Issue 4, 449–460 (2014).