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In this talk we consider the two-point boundary value problem for the one-
dimensional Liouville type equation

(1) '+ MNzllet =0, ze(-1,1); u(-1)=u(l) =0,

where A > 0 and [ > 0. Jacobsen-Schmitt [1] presented the exact multiplicity result
of radial solutions for the multi-dimensional problem

(2) Au+ Nzl'e* =0 in B; u=0 on dB,

where A > 0,1 > 0 and B := {z € RV : |z| < 1}, N > 1. In the case N = 1,
problem (2) is reduced to (1). We note here that every solution of (2) is positive
in B, by the strong maximum principle. Jacobsen and Schmitt [1] proved that if
1 < N < 2, then there exists A\, > 0 such that (2) has exactly two radial solutions
for 0 < A < A4, a unique radial solution for A = A\, and no radial solution for A > A,.

Recently, Miyamoto [3] proved the following symmetry-breaking bifurcation result
for (2) when N = 2.

Theorem A ([3]). Let ng be the largest integer that is smaller than 1 + % and

let oy, := 2log lfétén All the radial solutions of (2) with N = 2 can be written
explicitly as

AMa) =2(1 + Q)Q(e—a/Q —e®), Ul(r;a)=a—2log(l + (ea/Q _ 1)74;4_2)'

The radial solutions can be parameterized by the L°°-norm, it has one turning point
at A = Mag) = (I +2)/2, and it blows up as X\ | 0. For each n € {1,2,--- ,ng},
(Maw),U(r; o)) is a symmetry-breaking bifurcation point from which an unbounded
branch consisting of non-radial solutions of (2) with N = 2 emanates, and U(r; «) is
nondegenerate if o« # o, n = 0,1, ng. Each non-radial branch is in (0, \(ap))) ¥
{u >0} C R x H3(B).

Korman [2] found the interesting property of radial solutions to (2). Let w be a
unique solution of the initial value problem

w” + |zlle” =0, = >0; w(0)=uw'(0)=0.

It is easy to show that w(z) < 0, w'(x) < 0, w”(z) < 0 for z > 0 and lim,_,o w(z) =
—o00. Hence, there exists the inverse function n of —w(z). It follows that n €
C?(0,00), n(t) > 0 and 1'(t) > 0 for t > 0, n(0) = 0, and lim;_,, n(t) = co. By a
direct calculation, we easily prove that, for each a > 0,

(3) U(x) = wn(a)lz]) + o

satisfies ||U|l«o = a and is a positive even solution of (1) at A = [n(a)]'"2e~*. By
using this fact, we can show the following result, which is a generalization of the
result by Jacobsen and Schmitt [1] for the case N = 1.

Proposition 1.For each a > 0, there ezists a unique (A «a),U(x; ) such that (1)
with A = M) has a unique positive even solution U(x;a) such that ||U||e = a,
U(z;a) € C?*([-1,1] x (0,00)), A € C?(0,0), and

algﬂo Ma) = ah_{lgo AMa) = 0.
Moreover, there exist a, > 0 such that N(«) > 0 for 0 < a < a, and N (a) <0 for
a > ay. In particular, (2) has exactly two positive even solutions for 0 < A < Ay, a
unique positive even solution for A = A\, and no positive even solution for A > A,

where A = Aa).



Hereafter, let A(a), U(x; @), as and A« be as in Proposition 1.
Let m(«) be the Morse index of U(x; ) to (1), that is, the number of negative
eigenvalues p of

(4) ¢" + Na|'e"@Vg 4+ g =0, ze(~1,1); ¢(-1)=¢(1) =0.

A solution U(x; ) is said to be degenerate if u = 0 is an eigenvalue of (4). Otherwise,
it is said to be nondegenerate.
The following result is the main result of this talk.

Theorem 1.Let (A(a),U(x; ) and o > 0 be as in Proposition 1. Then there exist
constants ay, ag and az such that o, < oy < ag < ag and the following (i)—(vii)
hold:

) if 0 < a < ay, then m(a) =0 and U(z;«) is nondegenerate;
) if & = a, then m(a) = 0 and U(x; ) is degenerate;
(iii) of ax < @ < aq, then m(a) =1 and U(x; «) is nondegenerate;
(iv) if @« = aq, then m(a) = 1 and U(x; ) is degenerate;

) if o = ag, then m(a) = 1, U(x;«) is degenerate and (Aaw),U(x;a9)) is
a non-even bifurcation point, that is, for each ¢ > 0, there exists (u,\)
such that w is a positive non-even solution of (1) and |\ — A az)| + ||u —
U( : 7a2)||00 <g;

(Vi) if @ = a3, then m(a) =1 and U(z;«) is degenerate;

(vil) if @ > as, then m(a) = 2 and U(z;«) is nondegenerate.
Moreover, if 0 < A < M as), then (1) has a positive non-even solutions u(x) which
satisfies limy_ 1 ¢ ||u/lcc = 0.

Recalling the result by Jacobsen and Schmitt [1], the structures of radial solutions
of (2) with N = 2 and even solutions of (1) seems to be same. However, in [3]
Miyamoto proved the Morse index of the radial solution increases by one when «
passes each a,,, n =0,1,2,--- ,ng, where a, is as in Theorem A. On the other hand,
the Morse index of even solutions of (2) is at most 2 for each [ > 0.

When N = 2, radial solutions of (2) can be written explicitly, and hence, Miyamoto
[3] succeeded to find the bifurcation points. That is difficult even if we know exact
solutions, much more difficult if we do not know it. When N # 2, we do not know
exact radial solutions of (2) with > 0. However, Korman [2] found the solution (3)
as we have mentioned before. When N = 1, the structure of eigenvalues {u(a)}32,
of (4) is well-known. Combining these facts, we can show (i)—(iv) of Theorem 1 and
m(a) < 2 for a > 0. Moreover, by using the comparison function introduced in [4],
we can prove that m(«) > 2 for all sufficiently large a > 0. Then we can obtain
a symmetry-breaking bifurcation point of (1), by using the Leray-Schauder degree,
and hence we will obtain (v)—(vii) of Theorem 1.
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