Resolvent expansions for the Schrödinger operator on the discrete half-line

Kenichi ITO (Kobe University)

This talk is based on a recent joint work [1] with Arne Jensen, Aalborg University. The purpose of this talk is to investigate relationship between the generalized eigenspaces and the expansion coefficients of resolvent for the Schrödinger operator $H=H_{0}+V$ on the discrete half-line $\mathbb{N}=\{1,2, \ldots\}$. Here H_{0} is defined for any sequence $x: \mathbb{N}=\{1,2, \ldots\} \rightarrow \mathbb{C}$ by

$$
\left(H_{0} x\right)[n]= \begin{cases}2 x[1]-x[2] & \text { for } n=1 \\ 2 x[n]-x[n+1]-x[n-1] & \text { for } n \geq 2\end{cases}
$$

and we assume that V is real-valued and that for some integer $\beta \geq 1$ and $\epsilon>0$

$$
V[n]=O\left(|n|^{-1-2 \beta-\epsilon}\right) .
$$

Let us define the generalized zero eigenspaces by

$$
\widetilde{\mathcal{E}}=\left\{\Psi \in \ell^{\infty,-\beta}(\mathbb{N}) ; H \Psi=0\right\} .
$$

We can verify the specific asymptotics: $\widetilde{\mathcal{E}} \subset \mathbb{C} \mathbf{n} \oplus \mathbb{C} \mathbf{1} \oplus \ell^{1, \beta-2}(\mathbb{N})$, where $\mathbf{n}[m]=m$ and $\mathbf{1}[m]=1$ for $m \in \mathbb{N}$, and hence the following subspaces make sense:

$$
\mathcal{E}=\widetilde{\mathcal{E}} \cap\left(\mathbb{C} \mathbf{1} \oplus \ell^{1, \beta-2}(\mathbb{N})\right), \quad \mathrm{E}=\widetilde{\mathcal{E}} \cap \ell^{1, \beta-2}(\mathbb{N})
$$

Definition. The threshold $z=0$ is said to be

1. a regular point, if $\mathcal{E}=\mathrm{E}=\{0\}$;
2. an exceptional point of the first kind, if $\mathcal{E} \supsetneq \mathrm{E}=\{0\}$;
3. an exceptional point of the second kind, if $\mathcal{E}=\mathrm{E} \supsetneq\{0\}$;
4. an exceptional point of the third kind, if $\mathcal{E} \supsetneq \mathrm{E} \supsetneq\{0\}$.

Now let us set $R(\kappa)=\left(H+\kappa^{2}\right)^{-1}$ and $\mathcal{B}^{s}=\mathcal{B}\left(\ell^{1, s}(\mathbb{N}), \ell^{\infty,-s}(\mathbb{N})\right)$.

Theorem 1. Assume that the threshold 0 is a regular point, and that $\beta \geq 2$. Then

$$
R(\kappa)=\sum_{j=0}^{\beta-2} \kappa^{j} G_{j}+\mathcal{O}\left(\kappa^{\beta-1}\right) \quad \text { in } \mathcal{B}^{\beta-2}
$$

with $G_{j} \in \mathcal{B}^{j+1}$ for j even, and $G_{j} \in \mathcal{B}^{j}$ for j odd.
Theorem 2. Assume that the threshold 0 is an exceptional point of the first kind, and that $\beta \geq 3$. Then

$$
R(\kappa)=\sum_{j=-1}^{\beta-4} \kappa^{j} G_{j}+\mathcal{O}\left(\kappa^{\beta-3}\right) \quad \text { in } \mathcal{B}^{\beta-1}
$$

with $G_{j} \in \mathcal{B}^{j+3}$ for j even, and $G_{j} \in \mathcal{B}^{j+2}$ for j odd. In addition,

$$
G_{-1}=\left|\Psi_{c}\right\rangle\left\langle\Psi_{c}\right|,
$$

where $\Psi_{c} \in \mathcal{E}$ is the canonical resonance function.
Theorem 3. Assume that the threshold 0 is an exceptional point of the second kind, and that $\beta \geq 4$. Then

$$
R(\kappa)=\sum_{j=-2}^{\beta-6} \kappa^{j} G_{j}+\mathcal{O}\left(\kappa^{\beta-5}\right) \quad \text { in } \mathcal{B}^{\beta-2}
$$

with $G_{j} \in \mathcal{B}^{j+3}$ for j even, and $G_{j} \in \mathcal{B}^{j+2}$ for j odd. In addition,

$$
G_{-2}=P_{0}, \quad G_{-1}=0,
$$

where P_{0} is the projection onto E .
Theorem 4. Assume that the threshold 0 is an exceptional point of the third kind, and that $\beta \geq 4$. Then

$$
R(\kappa)=\sum_{j=-2}^{\beta-6} \kappa^{j} G_{j}+\mathcal{O}\left(\kappa^{\beta-5}\right) \quad \text { in } \mathcal{B}^{\beta-2}
$$

with $G_{j} \in \mathcal{B}^{j+3}$ for j even, and $G_{j} \in \mathcal{B}^{j+2}$ for j odd. In addition,

$$
G_{-2}=P_{0}, \quad G_{-1}=\left|\Psi_{c}\right\rangle\left\langle\Psi_{c}\right|,
$$

where P_{0} is the projection onto E , and $\Psi_{c} \in \mathcal{E}$ is the canonical resonance function.

References

[1] K. Ito and A. Jensen, Resolvent expansions for the Schrödinger operator on the discrete half-line, to appear in J. Math. Phys.

