A diffusive Lotka-Volterra prey-predator system with finitely many protection zones

Kazuhiro Oeda* Global Education Center, Waseda University

This talk is concerned with the following prey-predator system with protection zones for the prey:

$$(\mathbf{P}) \begin{cases} u_t = \Delta[(1+k\rho(x)v)u] + u(\lambda - u - b(x)v) & \text{in } \Omega \times (0,\infty), \\ v_t = \Delta v + v(\mu - v + cu) & \text{in } \Omega \setminus \overline{\Omega}_0 \times (0,\infty), \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega \times (0,\infty), \\ \frac{\partial v}{\partial n} = 0 & \text{on } \partial(\Omega \setminus \overline{\Omega}_0) \times (0,\infty), \\ u(x,0) = u_0(x) \ge 0 & \text{in } \Omega, \\ v(x,0) = v_0(x) \ge 0 & \text{in } \Omega \setminus \overline{\Omega}_0. \end{cases}$$

Here Ω is a bounded domain in $\mathbb{R}^N (N \ge 2)$ with smooth boundary $\partial\Omega$ and Ω_0 is an open subset of Ω with smooth boundary $\partial\Omega_0$; n is the outward unit normal vector on the boundary; $k \ge 0$, $\lambda > 0$, $\mu > 0$ and c > 0 are all constants; $\rho(x)$ is a smooth function in $\overline{\Omega}$ with $\partial\rho/\partial n = 0$ on $\partial\Omega$ and b(x) is a Hölder continuous function in $\overline{\Omega}$. We make the following assumptions: $\rho(x) > 0$ and b(x) > 0 in $\overline{\Omega} \setminus \overline{\Omega}_0$; $\rho(x) = b(x) = 0$ in $\overline{\Omega}_0$; both $\rho(x)/b(x)$ and $b(x)/\rho(x)$ are bounded in $\overline{\Omega} \setminus \overline{\Omega}_0$;

$$\Omega_0 = \bigcup_{i=1}^{\ell} O_i, \qquad \overline{O}_i \cap \overline{O}_j = \emptyset \text{ when } i \neq j, \tag{1}$$

where each O_i is a simply connected open set satisfying $\overline{O}_i \subset \Omega$.

Unknown functions u(x,t) and v(x,t) denote the population densities of prey and predator respectively; λ and μ denote the intrinsic growth rates of the respective species. The diffusion term $\Delta[(1 + k\rho(x)v)u]$ means that the movement of the prey species in $\overline{\Omega} \setminus \overline{\Omega}_0$ is affected by population pressure from the predator species, and $k\Delta[\rho(x)vu]$ is referred to as a cross-diffusion term, which was originally proposed by Shigesada et al. [10].

For each *i*, the subregion O_i is called a protection zone because the predator species cannot enter Ω_0 . Many researchers have studied the effect of a single protection zone (i.e. $\ell = 1$) on various population models (see [1, 3, 4, 5] for prey-predator models without cross-diffusion, [2] for a competition model without cross-diffusion, [6, 7, 8, 12] for prey-predator models with cross-diffusion, and [11] for a competition model with cross-diffusion).

^{*}E-mail: k-oeda@aoni.waseda.jp

In this talk, we mainly discuss the stationary problem of (P) with $\ell \geq 1$. The stationary problem associated with (P) is

$$(SP) \begin{cases} \Delta[(1+k\rho(x)v)u] + u(\lambda - u - b(x)v) = 0 & \text{in } \Omega, \\ \Delta v + v(\mu - v + cu) = 0 & \text{in } \Omega \setminus \overline{\Omega}_0, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \\ \frac{\partial v}{\partial n} = 0 & \text{on } \partial(\Omega \setminus \overline{\Omega}_0). \end{cases}$$

We define

$$\lambda_{\infty}^{*}(k,\Omega_{0}) = \begin{cases} \inf \\ \{\phi \in H^{1}(\Omega) : \int_{\Omega_{0}} \phi^{2} dx > 0\} \\ \min \\ i=1,2,\cdots,\ell \end{cases} \frac{\int_{\Omega} |\nabla \phi|^{2} dx + \frac{1}{k} \int_{\Omega \setminus \overline{\Omega}_{0}} \frac{b(x)}{\rho(x)} \phi^{2} dx}{\int_{\Omega_{0}} \phi^{2} dx} & \text{if } k > 0, \\ \int_{\Omega} \phi^{2} dx & \text{if } k = 0, \end{cases}$$
(2)

where $\lambda_1^D(O_i)$ is the first eigenvalue of $-\Delta$ over O_i with the homogeneous Dirichlet boundary condition. Moreover, for $q \in L^{\infty}(\Omega)$, we denote by $\lambda_1^N(q,\Omega)$ the first eigenvalue of $-\Delta + q$ over Ω with the homogeneous Neumann boundary condition.

The stationary problem (SP) has three constant solutions (u, v) = (0, 0), $(\lambda, 0)$ and $(0, \mu)$. Then we have the following theorem.

Theorem 1. The following results hold true:

(i) Suppose that 0 < λ < λ_∞^{*}(k, Ω₀). Then there exists a positive number μ^{*} such that (0, μ) is unstable if 0 < μ < μ^{*}, and asymptotically stable if μ > μ^{*}. Here μ^{*} is the unique positive solution of

$$\lambda_1^N \left(\frac{b(x)\mu^* - \lambda}{1 + k\rho(x)\mu^*}, \Omega \right) = 0.$$
(3)

- (ii) Suppose that $\lambda \geq \lambda_{\infty}^{*}(k, \Omega_{0})$. Then $(0, \mu)$ is unstable for any $\mu > 0$.
- (iii) Both (0,0) and $(\lambda, 0)$ are unstable for any $\lambda > 0$ and any $\mu > 0$.

We also have the following theorem.

Theorem 2. The following results hold true:

- (i) Suppose that 0 < λ < λ_∞^{*}(k, Ω₀) and let μ^{*} be the positive number defined by (3). Then (SP) has at least one positive solution if 0 < μ < μ^{*}, and no positive solution if μ ≥ μ^{*}.
- (ii) Suppose that $\lambda \geq \lambda_{\infty}^{*}(k, \Omega_{0})$. Then (SP) has at least one positive solution for any $\mu > 0$.

Theorems 1 and 2 were obtained in [9]. Theorem 1 can be proved by analyzing the spectrum of the linearized operator around each constant solution. Theorem 2 can be proved by applying the bifurcation theory.

Theorems 1 and 2 assert that $\lambda_{\infty}^*(k, \Omega_0)$ is the critical prey growth rate for survival. We see from (1) and (2) that $\lambda_{\infty}^*(0, \Omega_0)$ does not necessarily decrease even if ℓ increases. This fact shows that not all of the protection zones are effectively utilized when k = 0.

References

- [1] R. Cui, J. Shi and B. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differential Equations **256** (2014), 108–129.
- [2] Y. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations 244 (2008), 61–86.
- [3] Y. Du, R. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations 246 (2009), 3932–3956.
- [4] Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations 229 (2006), 63–91.
- [5] X. He and S. N. Zheng, Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), 2027–2038.
- [6] K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations **250** (2011), 3988–4009.
- [7] K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl. 22 (2012), 501–520.
- [8] K. Oeda, Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response, Discrete Contin. Dyn. Syst. Suppl. 2013 (2013), 597–603.
- [9] K. Oeda, Steady-state solutions of a diffusive prey-predator model with finitely many protection zones, submitted.
- [10] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. 79 (1979), 83–99.
- [11] Y.-X. Wang and W.-T. Li, Effect of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl. 14 (2013), 224–245.
- [12] Y.-X. Wang and W.-T. Li, Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system, Nonlinear Anal. Real World Appl. 14 (2013), 1235–1246.