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This talk is concerned with the following prey-predator system with protection zones
for the prey:

(w; = A[(1 + kp(z)v)u] + w(h —u — b(z)v) in Q x (0,00),

v =Av+v(p— v+ cu) in 2\ Q x (0,00),
ou
P) ‘3’3 0 on 082 X (B,m),
5 =0 on 9(22\ Qo) x (0,00),
u(x,0) =ug(z) >0 in Q,
(v(,0) =vo(z) = 0 in Q\ Q.

Here © is a bounded domain in RV(N > 2) with smooth boundary 99 and € is an
open subset of 2 with smooth boundary 9)y; n is the outward unit normal vector on the
boundary; k£ > 0, A > 0, x> 0 and ¢ > 0 are all constants; p(x) is a smooth function in
Q with dp/dn = 0 on 9Q and b(x) is a Holder continuous function in . We make the
following assumptions: p(z) > 0 and b(z) > 0 in Q\ Qo; p(x) = b(x) = 0 in Qp; both
p(z)/b(z) and b(x)/p(x) are bounded in O \ Qo;

¢
0 = U O;, 0,N0j =0 when i # j, (1)
i=1

where each O; is a simply connected open set satisfying O; C .

Unknown functions u(x, t) and v(z,t) denote the population densities of prey and preda-
tor respectively; A and p denote the intrinsic growth rates of the respective species. The
diffusion term A[(1 + kp(x)v)u] means that the movement of the prey species in 2\ Qg is
affected by population pressure from the predator species, and kA[p(x)vu] is referred to
as a cross-diffusion term, which was originally proposed by Shigesada et al. [10].

For each i, the subregion O; is called a protection zone because the predator species
cannot enter §)g. Many researchers have studied the effect of a single protection zone (i.e.
¢ = 1) on various population models (see [1, 3, 4, 5] for prey-predator models without cross-
diffusion, [2] for a competition model without cross-diffusion, [6, 7, 8, 12] for prey-predator
models with cross-diffusion, and [11] for a competition model with cross-diffusion).
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In this talk, we mainly discuss the stationary problem of (P) with £ > 1. The stationary
problem associated with (P) is

A1+ kp(x)v)u] + u(A —u —b(x)v) =0 in Q,

Av+v(p—v+cu) =0 in Q\ Q,
(SP) o
on =0 on 0,
%:O on 9(Q\ Q).
We define
1 b
/ V| *da + k/ Ex%&dx
a, plz
inf 0 N9 P if k>0,
)\?;O(k?, QO) = {¢€H1(Q) : fQO ¢2dx>0} ¢2d.’E (2)
Qo
1 D . . —
in jkl (05) if k=0,

where AP (0;) is the first eigenvalue of —A over O; with the homogeneous Dirichlet bound-
ary condition. Moreover, for ¢ € L>(Q2), we denote by A (g, ) the first eigenvalue of
—A + ¢q over € with the homogeneous Neumann boundary condition.

The stationary problem (SP) has three constant solutions (u,v) = (0,0), (A, 0) and
(0, 1t). Then we have the following theorem.

Theorem 1. The following results hold true:

i) Suppose that 0 < A < XX (k,Qq). Then there exists a positive number u* such that
oo
(0, ) is unstable if 0 < pu < p*, and asymptotically stable if > p*. Here p* is the

unique positive solution of
b(x)pu* — A >
MW (== o) =o. 3

1 (1 T o ®)

(ii) Suppose that A > X5 (k, Qo). Then (0, p) is unstable for any p > 0.
(iii) Both (0,0) and (X,0) are unstable for any A > 0 and any p > 0.

We also have the following theorem.
Theorem 2. The following results hold true:

(i) Suppose that 0 < X < Xi (k,Q0) and let u* be the positive number defined by (3).
Then (SP) has at least one positive solution if 0 < p < p*, and no positive solution
if >t

(ii) Suppose that X > N5 (k,Qo). Then (SP) has at least one positive solution for any
@ > 0.

Theorems 1 and 2 were obtained in [9]. Theorem 1 can be proved by analyzing the
spectrum of the linearized operator around each constant solution. Theorem 2 can be
proved by applying the bifurcation theory.

Theorems 1 and 2 assert that A’ (k, ) is the critical prey growth rate for survival.
We see from (1) and (2) that A5 (0,0) does not necessarily decrease even if ¢ increases.
This fact shows that not all of the protection zones are effectively utilized when k = 0.
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