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This talk is concerned with the following prey-predator system with protection zones
for the prey:

(P)



ut = ∆[(1 + kρ(x)v)u] + u(λ− u− b(x)v) in Ω× (0,∞),

vt = ∆v + v(µ− v + cu) in Ω \ Ω0 × (0,∞),
∂u
∂n = 0 on ∂Ω× (0,∞),
∂v
∂n = 0 on ∂(Ω \ Ω0)× (0,∞),

u(x, 0) = u0(x) ≥ 0 in Ω,

v(x, 0) = v0(x) ≥ 0 in Ω \ Ω0.

Here Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω and Ω0 is an
open subset of Ω with smooth boundary ∂Ω0; n is the outward unit normal vector on the
boundary; k ≥ 0, λ > 0, µ > 0 and c > 0 are all constants; ρ(x) is a smooth function in
Ω with ∂ρ/∂n = 0 on ∂Ω and b(x) is a Hölder continuous function in Ω. We make the
following assumptions: ρ(x) > 0 and b(x) > 0 in Ω \ Ω0; ρ(x) = b(x) = 0 in Ω0; both
ρ(x)/b(x) and b(x)/ρ(x) are bounded in Ω \ Ω0;

Ω0 =
ℓ∪

i=1

Oi, Oi ∩Oj = ∅ when i ̸= j, (1)

where each Oi is a simply connected open set satisfying Oi ⊂ Ω.
Unknown functions u(x, t) and v(x, t) denote the population densities of prey and preda-

tor respectively; λ and µ denote the intrinsic growth rates of the respective species. The
diffusion term ∆[(1 + kρ(x)v)u] means that the movement of the prey species in Ω \Ω0 is
affected by population pressure from the predator species, and k∆[ρ(x)vu] is referred to
as a cross-diffusion term, which was originally proposed by Shigesada et al. [10].

For each i, the subregion Oi is called a protection zone because the predator species
cannot enter Ω0. Many researchers have studied the effect of a single protection zone (i.e.
ℓ = 1) on various population models (see [1, 3, 4, 5] for prey-predator models without cross-
diffusion, [2] for a competition model without cross-diffusion, [6, 7, 8, 12] for prey-predator
models with cross-diffusion, and [11] for a competition model with cross-diffusion).
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In this talk, we mainly discuss the stationary problem of (P) with ℓ ≥ 1. The stationary
problem associated with (P) is

(SP)


∆[(1 + kρ(x)v)u] + u(λ− u− b(x)v) = 0 in Ω,

∆v + v(µ− v + cu) = 0 in Ω \ Ω0,
∂u
∂n = 0 on ∂Ω,
∂v
∂n = 0 on ∂(Ω \ Ω0).

We define

λ∗
∞(k,Ω0) =


inf{

ϕ∈H1(Ω) :
∫
Ω0

ϕ2dx>0
}
∫
Ω
|∇ϕ|2dx+

1

k

∫
Ω\Ω0

b(x)

ρ(x)
ϕ2dx∫

Ω0

ϕ2dx

if k > 0,

min
i=1,2,··· ,ℓ

λD
1 (Oi) if k = 0,

(2)

where λD
1 (Oi) is the first eigenvalue of −∆ over Oi with the homogeneous Dirichlet bound-

ary condition. Moreover, for q ∈ L∞(Ω), we denote by λN
1 (q,Ω) the first eigenvalue of

−∆+ q over Ω with the homogeneous Neumann boundary condition.
The stationary problem (SP) has three constant solutions (u, v) = (0, 0), (λ, 0) and

(0, µ). Then we have the following theorem.

Theorem 1. The following results hold true:

(i) Suppose that 0 < λ < λ∗
∞(k,Ω0). Then there exists a positive number µ∗ such that

(0, µ) is unstable if 0 < µ < µ∗, and asymptotically stable if µ > µ∗. Here µ∗ is the
unique positive solution of

λN
1

(
b(x)µ∗ − λ

1 + kρ(x)µ∗ ,Ω

)
= 0. (3)

(ii) Suppose that λ ≥ λ∗
∞(k,Ω0). Then (0, µ) is unstable for any µ > 0.

(iii) Both (0, 0) and (λ, 0) are unstable for any λ > 0 and any µ > 0.

We also have the following theorem.

Theorem 2. The following results hold true:

(i) Suppose that 0 < λ < λ∗
∞(k,Ω0) and let µ∗ be the positive number defined by (3).

Then (SP) has at least one positive solution if 0 < µ < µ∗, and no positive solution
if µ ≥ µ∗.

(ii) Suppose that λ ≥ λ∗
∞(k,Ω0). Then (SP) has at least one positive solution for any

µ > 0.

Theorems 1 and 2 were obtained in [9]. Theorem 1 can be proved by analyzing the
spectrum of the linearized operator around each constant solution. Theorem 2 can be
proved by applying the bifurcation theory.

Theorems 1 and 2 assert that λ∗
∞(k,Ω0) is the critical prey growth rate for survival.

We see from (1) and (2) that λ∗
∞(0,Ω0) does not necessarily decrease even if ℓ increases.

This fact shows that not all of the protection zones are effectively utilized when k = 0.
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