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This is a joint work with Kohei Nakao (Shinshu University). Let Ω be Rn, Rn
+, a

bounded domain, or an exterior domain with ∂Ω ∈ C∞. The motion of a viscous incom-
pressible fluid in Ω is governed by the Navier-Stokes equations:

(N-S)

{
∂tu−∆u+ u · ∇u+∇π = 0, div u = 0 t ∈ (0, T ), x ∈ Ω,

u|∂Ω = 0, u|t=0 = a,

where u = (u1(x, t), u2(x, t), · · · , un(x, t)) and π = π(x, t) denote the velocity vector and
the pressure, respectively, of the fluid at the point (x, t) ∈ Ω × (0, T ) and a is a given
initial velocity. In this talk, we consider Serrin type regularity criteria of solutions to the
3-D Navier-Stokes equations. Let p ≥ 3. It is known that if strong Lp-solutions u of the
Navier-Stokes equations on (0, T ) satisfies

(S)

∫ T

0

∥u∥2L∞(Ω)dτ <∞,

then u can be continued to the strong Lp-solution on (0, T ′) for some T ′ > T . In this talk,
we shall slightly relax the condition (S).

For this purpose, we use the Brezis-Gallouet-Wainger type inequality:

(BGW )β ∥u∥L∞ ≤ C(1 + ∥f∥X logβ(e+ ∥f∥Y )).

Brezis-Gallouet-Wainger [2, 3] proved (BGW )β in the case β = 1−1/p, X =W n/p,p(Rn),
Y = W n/q+α,q(Rn)(⊂ Ċα)(α > 0). Engler [5] proved the same inequality for general
domains Ω if n/p is an integer. Ozawa [16] also proved it for general domains Ω without
any condition on n/p. When Ω = Rn, in [9], (BGW )β was proved for 0 ≤ β ≤ 1,
X = B0

∞,1/(1−β)(Rn) and Y = Cα(Rn). By using the method given in [16], when Ω is a

bounded domain, in [15], (BGW )β was proved for β = 1, X = bmo(Ω) and Y = Ċα(Ω).
We note that in [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20] several inequalities
of Brezis-Gallouet-Wainger type were established in the case Y = Ċα or Y ⊂ Ċα . On
the other hand, there are several choice of X. Then, we have one question.

What is the largest normed space X that satisfies (BGW )β with Y = Ċα(Ω)?.
In this talk, we also consider this problem.

We introduce Banach spaces of Morrey type and Besov type which are wider than L∞.
Definition. (1) (Morrey type space)

• Mβ(Ω) := {f ∈ L1
loc(Ω̄); ∥f∥Mβ

<∞} is introduced by the norm

∥f∥Mβ(Ω) := sup
x∈Ω, 0<t<1

1

|B(x, t)| logβ(e+ 1
t
)

∫
B(x,t)∩Ω

|f(y)|dy.

• M̃β(Ω) is defined by

M̃β(Ω) := BC(Ω̄)
∥·∥Mβ(Ω)

.

(2) (Modified Vishik’s space). Let ψ be a smooth function on Rn with ψ̂(ξ) = 1 in
B(0, 1/2) and ψ̂(ξ) = 0 in B(0, 1)c. Then,



• Vβ(Rn) = {f ∈ S ′(Rn); ∥f∥Vβ
<∞} is introduced by the norm

∥f∥Vβ
:= sup

N=1,2,···

∥ψN ∗ f∥∞
Nβ

, where ψN(x) := 2nNψ(2Nx).

• Ṽβ is defined by

Ṽβ := BUC(Rn)
∥·∥Vβ .

Remark. (a) We have Mβ(Ω) ⊃ L∞(Ω) and Vβ(Rn) ⊃Mβ(Rn) ⊃ L∞(Rn).
(b) Ṽβ(Rn) and M̃β(Ω) satisfy (BGW )β. That is, if α ∈ (0, 1) and β > 0, then there

are constants C1, C2 > 0 such that

∥f∥L∞(Ω) ≤ C2

{
1 + ∥f∥Mβ(Ω) log

β
(
e+ ∥f∥Ċα(Ω)

)}
for all f ∈ Ċα(Ω) ∩ M̃β(Ω) and

∥f∥L∞(Rn) ≤ C1

{
1 + ∥f∥Vβ(Rn) log

β
(
e+ ∥f∥Ċα(Rn)

)}
for all f ∈ Ċα(Rn) ∩ Ṽβ(Rn).

Now our results read as follows:

Theorem 1. Let β > 0 and X be a normed space. Assume that X satisfies the following
conditions (A):

(A)



(1) BC(Ω̄) ↪→ X(Ω) ⊂ L1
uloc(Ω̄) and BC(Ω̄) is dense in X,

(2) ∥ · ∥X has a translation invariant property in the following sense∥∥f(·+ y)
∣∣
Ω

∥∥
X(Ω)

≤ ∥f∥X(Ω) for all y ∈ Rn and all f ∈ C0(Ω),

(3) ∥f∥X ≤ ∥g∥X if f, g ∈ BC(Ω̄) and |f(x)| ≤ |g(x)| a.e. x ∈ Ω,
(4) there exist constants α ∈ (0, 1) and C > 0 such that

∥f∥L∞(Ω) ≤ C
{
1 + ∥f∥X logβ

(
e+ ∥f∥Ċα(Ω)

)}
for all f ∈ Ċα(Ω) ∩X.

Then X is continuously embedded in M̃β(Ω).

Remarks. (i) Since f(·) = f(·+ y− y), (A-2) implies that ∥f∥X(Ω) = ∥f(·+ y)∥X(Ω),
if both of f and f(·+ y) belong to C0(Ω).

(ii) Since M̃β satisfies (A), Theorem 1 implies that M̃β is the largest normed space
that satisfies conditions (A).

If Ω = Rn, without the condition (A-3), we have a similar result as follows.

Theorem 2. Let β > 0 and X be a normed space. Assume that X satisfies the following
conditions (B):

(B)



(1) BUC(Rn) ↪→ X ↪→ S ′(Rn) and BUC is dense in X,
(2) ∥ · ∥X has a translation invariant proprty, i.e.,

∥f(· − y)∥X = ∥f∥X for all y ∈ Rn,
(3) there exist constants α ∈ (0, 1) and C > 0 such that

∥f∥L∞(Rn) ≤ C
{
1 + ∥f∥X logβ

(
e+ ∥f∥Ċα(Rn)

)}
for all f ∈ BC∞(Rn).

Then X is continuously embedded in Ṽβ.

Remark. Since Ṽβ(Rn) satisfies (B), Theorem 2 implies that Ṽβ(Rn) is the largest
normed space that satisfies conditions (B).

Theorem 3. Let n = 3, p ≥ 3, a ∈ Lp
σ(Ω) ∩ Ẇ 1,2

0,σ (Ω) and u be a solution to (N-S) on
(0, T ) in the class

Sp(0, T ) := C([0, T );Lp
σ) ∩ C1((0, T );Lp

σ) ∩ C((0, T );W 2,p(Ω) ∩W 1,p
0 (Ω)).

Assume that

(A)

∫ T

s

∥u(τ)∥2M1/2(Ω)dτ <∞ for some s ∈ (0, T ).

Then, u can be continued to the solution in the class Sp(0, T
′) for some T ′ > T .



Remark. (i) When Ω = R3, Condition (A) can be replaced by
∫ T

s
∥u(τ)∥2V1/2(R3)dτ <

∞ for some s ∈ (0, T ).
(ii) We can also establish Beale-Kato-Majda type criteria.
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