Brezis-Gallouet-Wainger type inequality and its application to the NavierStokes equations

Yasushi TANIUCHI (Shinshu University)

This is a joint work with Kohei Nakao (Shinshu University). Let Ω be $\mathbb{R}^{n}, \mathbb{R}_{+}^{n}$, a bounded domain, or an exterior domain with $\partial \Omega \in C^{\infty}$. The motion of a viscous incompressible fluid in Ω is governed by the Navier-Stokes equations:

$$
\text { (N-S) }\left\{\begin{array}{rl}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla \pi=0, & \operatorname{div} u=0 \\
\left.u\right|_{\partial \Omega}=0, & \left.u\right|_{t=0}=a,
\end{array} \quad t \in(0, T), \quad x \in \Omega,\right.
$$

where $u=\left(u^{1}(x, t), u^{2}(x, t), \cdots, u^{n}(x, t)\right)$ and $\pi=\pi(x, t)$ denote the velocity vector and the pressure, respectively, of the fluid at the point $(x, t) \in \Omega \times(0, T)$ and a is a given initial velocity. In this talk, we consider Serrin type regularity criteria of solutions to the 3 -D Navier-Stokes equations. Let $p \geq 3$. It is known that if strong L^{p}-solutions u of the Navier-Stokes equations on $(0, T)$ satisfies

$$
\begin{equation*}
\int_{0}^{T}\|u\|_{L^{\infty}(\Omega)}^{2} d \tau<\infty \tag{S}
\end{equation*}
$$

then u can be continued to the strong L^{p}-solution on $\left(0, T^{\prime}\right)$ for some $T^{\prime}>T$. In this talk, we shall slightly relax the condition (S).

For this purpose, we use the Brezis-Gallouet-Wainger type inequality:

$$
(B G W)_{\beta} \quad\|u\|_{L^{\infty}} \leq C\left(1+\|f\|_{X} \log ^{\beta}\left(e+\|f\|_{Y}\right)\right) .
$$

Brezis-Gallouet-Wainger [2, 3] proved $(B G W)_{\beta}$ in the case $\beta=1-1 / p, X=W^{n / p, p}\left(\mathbb{R}^{n}\right)$, $Y=W^{n / q+\alpha, q}\left(\mathbb{R}^{n}\right)\left(\subset \dot{C}^{\alpha}\right)(\alpha>0)$. Engler [5] proved the same inequality for general domains Ω if n / p is an integer. Ozawa [16] also proved it for general domains Ω without any condition on n / p. When $\Omega=\mathbb{R}^{n}$, in [9], $(B G W)_{\beta}$ was proved for $0 \leq \beta \leq 1$, $X=B_{\infty, 1 /(1-\beta)}^{0}\left(\mathbb{R}^{n}\right)$ and $Y=C^{\alpha}\left(\mathbb{R}^{n}\right)$. By using the method given in [16], when Ω is a bounded domain, in [15], $(B G W)_{\beta}$ was proved for $\beta=1, X=b m o(\Omega)$ and $Y=\dot{C}^{\alpha}(\Omega)$. We note that in $[1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20]$ several inequalities of Brezis-Gallouet-Wainger type were established in the case $Y=\dot{C}^{\alpha}$ or $Y \subset \dot{C}^{\alpha}$. On the other hand, there are several choice of X. Then, we have one question.

What is the largest normed space X that satisfies $(B G W)_{\beta}$ with $Y=\dot{C}^{\alpha}(\Omega)$?. In this talk, we also consider this problem.

We introduce Banach spaces of Morrey type and Besov type which are wider than L^{∞}. Definition. (1) (Morrey type space)

- $M_{\beta}(\Omega):=\left\{f \in L_{\text {loc }}^{1}(\bar{\Omega}) ;\|f\|_{M_{\beta}}<\infty\right\}$ is introduced by the norm

$$
\|f\|_{M_{\beta}(\Omega)}:=\sup _{x \in \Omega, 0<t<1} \frac{1}{|B(x, t)| \log ^{\beta}\left(e+\frac{1}{t}\right)} \int_{B(x, t) \cap \Omega}|f(y)| d y .
$$

- $\tilde{M}_{\beta}(\Omega)$ is defined by

$$
\tilde{M}_{\beta}(\Omega):=\overline{B C(\bar{\Omega})}\left\|^{\|}\right\|_{M_{\beta}(\Omega)} .
$$

(2) (Modified Vishik's space). Let ψ be a smooth function on \mathbb{R}^{n} with $\hat{\psi}(\xi)=1$ in $B(0,1 / 2)$ and $\hat{\psi}(\xi)=0$ in $B(0,1)^{c}$. Then,

- $V_{\beta}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) ;\|f\|_{V_{\beta}}<\infty\right\}$ is introduced by the norm

$$
\|f\|_{V_{\beta}}:=\sup _{N=1,2, \ldots} \frac{\left\|\psi_{N} * f\right\|_{\infty}}{N^{\beta}}, \quad \text { where } \quad \psi_{N}(x):=2^{n N} \psi\left(2^{N} x\right)
$$

- \tilde{V}_{β} is defined by

$$
\tilde{V}_{\beta}:=\overline{B U C\left(\mathbb{R}^{n}\right)}{ }^{\|\cdot\|_{v_{\beta}}} .
$$

Remark. (a) We have $M_{\beta}(\Omega) \supset L^{\infty}(\Omega)$ and $V_{\beta}\left(\mathbb{R}^{n}\right) \supset M_{\beta}\left(\mathbb{R}^{n}\right) \supset L^{\infty}\left(\mathbb{R}^{n}\right)$.
(b) $\tilde{V}_{\beta}\left(\mathbb{R}^{n}\right)$ and $\tilde{M}_{\beta}(\Omega)$ satisfy $(B G W)_{\beta}$. That is, if $\alpha \in(0,1)$ and $\beta>0$, then there are constants $C_{1}, C_{2}>0$ such that

$$
\begin{aligned}
& \|f\|_{L^{\infty}(\Omega)} \leq C_{2}\left\{1+\|f\|_{M_{\beta}(\Omega)} \log ^{\beta}\left(e+\|f\|_{\dot{C}^{\alpha}(\Omega)}\right)\right\} \text { for all } f \in \dot{C}^{\alpha}(\Omega) \cap \tilde{M}_{\beta}(\Omega) \text { and } \\
& \|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C_{1}\left\{1+\|f\|_{V_{\beta}\left(\mathbb{R}^{n}\right)} \log ^{\beta}\left(e+\|f\|_{\dot{C}^{\alpha}\left(\mathbb{R}^{n}\right)}\right)\right\} \text { for all } f \in \dot{C}^{\alpha}\left(\mathbb{R}^{n}\right) \cap \tilde{V}_{\beta}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

Now our results read as follows:
Theorem 1. Let $\beta>0$ and X be a normed space. Assume that X satisfies the following conditions (A):
$(1) B C(\bar{\Omega}) \hookrightarrow X(\Omega) \subset L_{\text {uloc }}^{1}(\bar{\Omega})$ and $B C(\bar{\Omega})$ is dense in X,
(2) $\|\cdot\|_{X}$ has a translation invariant property in the following sense $\left\|\left.f(\cdot+y)\right|_{\Omega}\right\|_{X(\Omega)} \leq\|f\|_{X(\Omega)}$ for all $y \in \mathbb{R}^{n}$ and all $f \in C_{0}(\Omega)$,
(A)
(3) $\|f\|_{X} \leq\|g\|_{X}$ if $f, g \in B C(\bar{\Omega})$ and $|f(x)| \leq|g(x)|$ a.e. $x \in \Omega$,
(4) there exist constants $\alpha \in(0,1)$ and $C>0$ such that

$$
\|f\|_{L^{\infty}(\Omega)} \leq C\left\{1+\|f\|_{X} \log ^{\beta}\left(e+\|f\|_{\dot{C}^{\alpha}(\Omega)}\right)\right\} \text { for all } f \in \dot{C}^{\alpha}(\Omega) \cap X
$$

Then X is continuously embedded in $\tilde{M}_{\beta}(\Omega)$.
Remarks. (i) Since $f(\cdot)=f(\cdot+y-y)$, (A-2) implies that $\|f\|_{X(\Omega)}=\|f(\cdot+y)\|_{X(\Omega)}$, if both of f and $f(\cdot+y)$ belong to $C_{0}(\Omega)$.
(ii) Since \tilde{M}_{β} satisfies (A), Theorem 1 implies that \tilde{M}_{β} is the largest normed space that satisfies conditions (A).

If $\Omega=\mathbb{R}^{n}$, without the condition (A-3), we have a similar result as follows.
Theorem 2. Let $\beta>0$ and X be a normed space. Assume that X satisfies the following conditions (B):

```
(1) \(B U C\left(\mathbb{R}^{n}\right) \hookrightarrow X \hookrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)\) and \(B U C\) is dense in \(X\),
    (2) \(\|\cdot\|_{X}\) has a translation invariant proprty, i.e.,
                        \(\|f(\cdot-y)\|_{X}=\|f\|_{X}\) for all \(y \in \mathbb{R}^{n}\),
            (3) there exist constants \(\alpha \in(0,1)\) and \(C>0\) such that
        \(\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C\left\{1+\|f\|_{X} \log ^{\beta}\left(e+\|f\|_{\dot{C}^{\alpha}\left(\mathbb{R}^{n}\right)}\right)\right\}\) for all \(f \in B C^{\infty}\left(\mathbb{R}^{n}\right)\).
```

Then X is continuously embedded in \tilde{V}_{β}.
Remark. Since $\tilde{V}_{\beta}\left(\mathbb{R}^{n}\right)$ satisfies (B), Theorem 2 implies that $\tilde{V}_{\beta}\left(\mathbb{R}^{n}\right)$ is the largest normed space that satisfies conditions (B).
Theorem 3. Let $n=3, p \geq 3, a \in L_{\sigma}^{p}(\Omega) \cap \dot{W}_{0, \sigma}^{1,2}(\Omega)$ and u be a solution to (N-S) on $(0, T)$ in the class

$$
S_{p}(0, T):=C\left([0, T) ; L_{\sigma}^{p}\right) \cap C^{1}\left((0, T) ; L_{\sigma}^{p}\right) \cap C\left((0, T) ; W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right) .
$$

Assume that

$$
\text { (A) } \int_{s}^{T}\|u(\tau)\|_{M_{1 / 2}(\Omega)}^{2} d \tau<\infty \quad \text { for some } s \in(0, T)
$$

Then, u can be continued to the solution in the class $S_{p}\left(0, T^{\prime}\right)$ for some $T^{\prime}>T$.

Remark. (i) When $\Omega=\mathbb{R}^{3}$, Condition (A) can be replaced by $\int_{s}^{T}\|u(\tau)\|_{V_{1 / 2}\left(\mathbb{R}^{3}\right)}^{2} d \tau<$ ∞ for some $s \in(0, T)$.
(ii) We can also establish Beale-Kato-Majda type criteria.

References

[1] Beale, J.T., Kato, T., Majda, A., Commun. Math. Phys., 94 (1984), 61-66.
[2] Brezis, H., Gallouet, T., Nonlinear Anal. T.M.A., 4 (1980), 677-681.
[3] Brezis, H., Wainger, S., Comm. Partial Differential Equations, 5 (1987), 773-789.
[4] Chemin, J-Y., Oxford Science Publications, 1998.
[5] Engler, H., Comm. Partial Differential equations., 14 no. 4 (1989), 541-544.
[6] Ibrahim, S., Majdoub, M., Masmoudi, N., Proc. AMS., 135 (2007), 87-97.
[7] Ferrari, A. B., Commun. Math. Phys., 155 (1993), 277-294.
[8] Kato, T., Ponce, G., Comm. Pure Appl. Math. , 41, (1988) 891-907.
[9] Kozono, H., Ogawa, T., Taniuchi, Y., Math. Z. 242 (2002) 251-278.
[10] Kozono, H., Taniuchi, Y., Commun. Math. Phys. 214 (2000) 191-200
[11] Kozono, H., Wadade, H., Math. Z. 259 (2008) 935-950
[12] Matsumoto, T., Ogawa, T., Math. Nachr. 283 (2010) 1810-1828
[13] Morii, K., Sato, T., Wadade, H., Nonliniear Analysis 73 (2010) 1747-1766
[14] Ogawa, T., SIAM J. Math. Anal., 34 (2003), 1318-1330.
[15] Ogawa, T., Taniuchi, Y., J. Differential. Equation., 190 (2003), 39-63.
[16] Ozawa, T., J. Funct. Anal., 127 (1995), 259-269.
[17] Sawano, Y., Wadade, H., J. Fourier Anal. Appl. 19 (2013), 20-47.
[18] Shirota, T., Yanagisawa, T., Proc. Japan Acad., 69 Ser. A (1993) 77-82.
[19] Vishik, M., Ann. Sci. École Norm. Sup., 32 (1999) 769-812.
[20] Zajaczkowski, W. M., Bull. Polish Acad. of Sciences Mathematics 37 (1989), 169-181.

