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We consider the Zakharov–Kuznetsov equation on R× TL:

(ZK)

{
ut + ∂x(∆u+ u2) = 0, (t, x, y) ∈ R× R× TL,

u(0, x, y) = u0(x, y), (x, y) ∈ R× TL

where u is a real valued unknown function and TL = R/2πLZ. In [16], the Zakharov–Kuznetsov
equation is derived the propagation of ionic-acoustic waves in uniformly magnetized plasma. The
global well-posedness of Cauchy problem of (ZK) in the energy space H1(R × TL) was proved
by Molinet–Pilod [10]. The equation (ZK) has solitary wave solutions which are defined by
non-trivial solutions to (ZK) with the form

u(t, x, y) = Q(x− ct, y)

for some traveling speed c > 0. Then, Q(x−ct, y) is a solitary wave if and only if Q is a non-trivial
solution to the stationary equation

−∆Q+ cQ−Q2 = 0, (x, y) ∈ R× TL. (1)

We define the orbital stability of solitary wave of (ZK) as follows.

Definition 1. We say that a solitary wave Q(x− ct, y) is orbitally stable if for any ε > 0 there
exists δ > 0 such that for all initial data u0 ∈ H1(R × TL) with ∥u0 −Q∥H1 < δ, the solution
u(t) to (ZK) with u(0) = u0 satisfies

sup
t>0

inf
(x0,y0)∈R×TL

∥u(t, ·, ·)−Q(· − x0, · − y0)∥H1 < ε.

Otherwise, we say the solitary wave Q(x− ct, y) is orbitally unstable.

The orbital stability and the asymptotic stability of solitary waves of the Zakharov–Kuznetsov
equation on R2 was proved in [4, 3].

If the solution u to (ZK) does not depend on the variable of the transverse direction TL, then
u is also a solution to the Korteweg–de Vrise equation:

(KdV) ut + uxxx + 2uux = 0, (t, x) ∈ R× R.

∗E-mail addresses: y-youhei@math.kyoto-u.ac.jp

1



The KdV equation has the soliton solution Rc(t, x) = Qc(x− ct), where

Qc(x) =
3c

2
cosh−2

(√cx

2

)
.

The orbital stability of Rc for c > 0 was showed in [1] and the asymptotic stability of Rc was
proved in [12, 9, 7].

In this talk, we regard Rc as a line solitary wave of (ZK) and consider the orbital stability
and the asymptotic stability of line solitary wave of (ZK). Namely, we consider the stability of
line solitary wave

R̃c(t, x, y) = Rc(t, x) = Q(x− ct), (t, x, y) ∈ R× TL.

If R̃c is unstable, then we say that this instability is the transverse instability. For c > 0, the
linear instability of R̃c on R × TL for large L was showed by Bridges [2]. On the whole space
R2, The transverse instability of R̃c for c > 0 was proved by Rousset–Tzvetkov [13]. On the
periodical space TL1 ×TL2 , Johnson [6] proved the transverse instability of line periodic solitary
waves.

Main result for the orbital stability is the following.

Theorem 2. Let L, c > 0. Then, the following hold.

(i) If 0 < L ≤ 2√
5c
, then R̃c is orbitally stable on R× TL.

(ii) If L > 2√
5c
, then R̃c is orbitally unstable on R× TL.

For L > 0, c = 4
5L2 is the critical traveling speed which is the boundary between the orbital

stability and the orbital instability. In the following proposition, we show Q 4
5L2

is a bifurcation

point on the branch of solutions Qc.

Proposition 3. Let L > 0. Then, there exist δ0 > 0 and φL ∈ C2((−δ0, δ0)
2,H2(R× TL)) such

that for a = (a1, a2) ∈ (−δ0, δ0)
2 we have φL(a)(x − č(a)t, y) is a stable solitary wave of (ZK)

with

φL(a)(x, y) = Q 4
5L2

+ a1Q
3
2
4

5L2

cos
y

L
+ a2Q

3
2
4

5L2

sin
y

L
+O(|a|2).

The following theorem is an main result for the asymptotic stability.

Theorem 4. Let c, L > 0. If 0 < L < 2√
5c
, then R̃c is asymptotically stable on H1(R × TL) in

the sense by Martel–Merle [8]. i.e.(the critical case c = 4
5L2 ). For any β > 0, there exists εβ > 0

such that for u0 ∈ H1(R×TL) with
∥∥∥u0 −Q 4

5L2

∥∥∥
H1

< εβ, there exist ρ1(t), ρ2(t) ∈ C1([0,∞),R),
c+ > 0 and a+ ∈ R2 satisfying that{∥∥u(t, ·, ·)−Qc+(· − ρ1(t), · − ρ2(t))

∥∥
H1(x>βt)

→ 0 as t → ∞,

(ρ̇1(t), ρ̇2(t)) → (c+, 0) as t → ∞

or {
∥u(t, ·, ·)− φL(a+)(· − ρ1(t), · − ρ2(t))∥H1(x>βt) → 0 as t → ∞,

(ρ̇1(t), ρ̇2(t)) → (č(a+), 0) as t → ∞,
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where

∥u∥2H1(x>βt) =

∫
{x>βt}

(|∇u|2 + |u|2)dxdy.

Moreover, ∣∣∣ 4

5L2
− c+

∣∣∣+ |a+|2 ≲
∥∥∥u0 −Q 4

5L2

∥∥∥
H1

.

In general, Qc is not a ground state of the stationary equation (1). Therefore, to prove the
orbital stability of R̃c on R×TL, we can not apply the variational method. For 0 < L < 2√

5c
, we

show the orbital stability of R̃c by applying the Lyapunov function method by [5]. In general,
the number of the negative eigenvalue of the linearized operator for the stationary equation (1)
around Qc is larger than one. Thus, we can not show the orbital instability of R̃c by applying
the Lyapunov function method by [5]. For L > 2√

5c
, we show the orbital instability of R̃c on

R× TL from the linear instability of the linearized equation of (ZK) around R̃c by applying the
argument in [14]. To prove the linear instability, we use the method of Evans’ function in [11].
In the critical case L = 2√

5c
, the linearized operator of (1) around Qc is degenerate. To prove the

orbital stability in the critical case, we apply the argument in [15].
For the proof of the asymptotic stability of R̃c, we apply the argument by Martel–Merle

[7, 8] for KdV equation and Côte–Muñoz–Pilod–Simpson [3]. This argument relies on a Liouville
type theorem for spatially decaying solutions around a solitary wave. From the orbital stability
and the monotonicity property, solutions near by a solitary wave converge to an exponentially
decaying function in H1(x > a). From the Liouville type theorem, this function must be solitary
wave. The virial type estimate is important to show the Liouville type theorem. In the case
0 < L < 2√

5c
, the linearized operator of the stationary equation (1) around Qc is coercive on

{u ∈ H1 : ∥u∥L2 = ∥Qc∥L2} by modulating translation. Using the coerciveness, we can show
the Liouville type theorem from the usual virial type estimate. However, in the case L = 2√

5c
,

this linearized operator is degenerate. Therefore, we can not show the Liouville type theorem by
applying the usual virial type estimate. To show the Liouville type theorem for L = 2√

5c
, we use

modulated solitary waves and the modulated virial type estimate. In this talk, I show the outline
of proof of Theorem 4 and explain the argument to prove the asymptotic stability.
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