Oscillatory bifurcation for semilinear ordinary differential equations

Tetsutaro Shibata
Laboratory of Mathematics, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
tshibata@hiroshima-u.ac.jp

We consider the bifurcation problem

$$
\begin{aligned}
-u^{\prime \prime}(t) & =\lambda(u(t)+g(u(t))), \quad x \in I:=(-1,1), \\
u(t) & >0, \quad t \in I, \\
u(-1) & =u(1)=0 .
\end{aligned}
$$

Here, $\lambda>0$ is a bifurcation parameter. The typical example of $g(u)$ is $g_{1}(u):=\sin \sqrt{u}$. It is well known that under the suitable conditions on $g(u), \lambda$ is parameterized by the maximum norm $\alpha=\left\|u_{\lambda}\right\|_{\infty}$ of the solution u_{λ} corresponding to λ and is written as $\lambda=\lambda(g, \alpha)$. It should be mentioned that if $g(u)=g_{1}(u)=\sin \sqrt{u}$, then this problem has been proposed in Cheng (2002) as an example which has arbitrary many solutions near the line $\lambda=\pi^{2} / 4$. In this talk, we first show that the bifurcation diagram of $\lambda\left(g_{1}, \alpha\right)$ intersects the line $\lambda=\pi^{2} / 4$ infinitely many times by establishing the precise asymptotic formulas for $\lambda\left(g_{1}, \alpha\right)$ as $\alpha \rightarrow \infty$. Secondly, we generalize the results above and treat the other cases, which produce the bifurcation curves intersecting the line $\lambda=\pi^{2} / 4$ infinitely many times.

